110 resultados para Window Coupler
Resumo:
The countries in West Africa (WA) are pushing for socio-economic development. The construction sector has an important part to play in helping to realise these aspirations. This necessitates an increased emphasis on research in the built environment, as a key contributor to developing capacity, knowledge and technologies for the sector. The West Africa Built Environment Research (WABER) conference was initiated in 2008. The objective was to: help young built environment researchers in West Africa (WA) to develop their research work and skills through constructive face-to-face interaction with their peers and experienced international academics; supply a platform for interaction among more senior academics and an outlet for disseminating their research work; and to serve as a vehicle for developing the built environment field in Africa. Three conferences have so far been organised, 2009 - 2011, bringing together ~300 academics, researchers and practitioners from the WA region. This paper draws on content analysis of the 189 papers in the proceedings of three conferences: 2009 (25); 2010 (57) and 2011 (107). These papers provide a window into current research priorities and trends and, thus, offer an opportunity to understand the kinds of research work undertaken by built environment researchers in West Africa. The aim is to illuminate the main research themes and methods that are currently pursued and the limitations thereof. The findings lay bare some of the many challenges that are faced by academics in WA and provide suggestions for alternative directions for future research and development work with indications of a potential research agenda.
Resumo:
A global archive of high-resolution (3-hourly, 0.58 latitude–longitude grid) window (11–12 mm) brightness temperature (Tb) data from multiple satellites is being developed by the European Union Cloud Archive User Service (CLAUS) project. It has been used to construct a climatology of the diurnal cycle in convection, cloudiness, and surface temperature for all regions of the Tropics. An example of the application of the climatology to the evaluation of the climate version of the U.K. Met. Office Unified Model (UM), version HadAM3, is presented. The characteristics of the diurnal cycle described by the CLAUS data agree with previous observational studies, demonstrating the universality of the characteristics of the diurnal cycle for land versus ocean, clear sky versus convective regimes. It is shown that oceanic deep convection tends to reach its maximum in the early morning. Continental convection generally peaks in the evening, although there are interesting regional variations, indicative of the effects of complex land–sea and mountain–valley breezes, as well as the life cycle of mesoscale convective systems. A striking result from the analysis of the CLAUS data has been the extent to which the strong diurnal signal over land is spread out over the adjacent oceans, probably through gravity waves of varying depths. These coherent signals can be seen for several hundred kilometers and in some instances, such as over the Bay of Bengal, can lead to substantial diurnal variations in convection and precipitation. The example of the use of the CLAUS data in the evaluation of the Met. Office UM has demonstrated that the model has considerable difficulty in capturing the observed phase of the diurnal cycle in convection, which suggests some fundamental difficulties in the model’s physical parameterizations. Analysis of the diurnal cycle represents a powerful tool for identifying and correcting model deficiencies.
Resumo:
Water vapour modulates energy flows in Earth's climate system through transfer of latent heat by evaporation and condensation and by modifying the flows of radiative energy both in the longwave and shortwave portions of the electromagnetic spectrum. This article summarizes the role of water vapour in Earth's energy flows with particular emphasis on (1) the powerful thermodynamic constraint of the Clausius Clapeyron equation, (2) dynamical controls on humidity above the boundary layer (or free-troposphere), (3) uncertainty in continuum absorption in the relatively transparent "window" regions of the radiative spectrum and (4) implications for changes in the atmospheric hydrological cycle.
Resumo:
Senescence is a vitally important sequence of events in the latter phase of the life cycle of a plant that determines yield and reproductive success. In many species, and in different plant organs, ethylene is a key regulator of senescence and an increased understanding of the way the hormone functions will enable the timing and location of senescence to be manipulated in order to improve yield, quality and longevity. This chapter examines the physiological and molecular regulation of senescence in different plant organs and introduces the concept of the ‘senescence window’ in which plant organs are receptive to ethylene-mediated senescence cues. Several studies have attempted to elucidate global patterns of the regulation of senescence, which have enabled the function of ethylene to be placed in the context of the involvement of other, often antagonistic, hormones in the execution of senescence and downstream processes. Finally, we examine the consequences of senescence for post-harvest biology, an area where the control of ethylene action has been actively sought in order to control precisely the timing of senescence and ripening processes so that crop quality can be enhanced and maintained.
Resumo:
Optimal state estimation from given observations of a dynamical system by data assimilation is generally an ill-posed inverse problem. In order to solve the problem, a standard Tikhonov, or L2, regularization is used, based on certain statistical assumptions on the errors in the data. The regularization term constrains the estimate of the state to remain close to a prior estimate. In the presence of model error, this approach does not capture the initial state of the system accurately, as the initial state estimate is derived by minimizing the average error between the model predictions and the observations over a time window. Here we examine an alternative L1 regularization technique that has proved valuable in image processing. We show that for examples of flow with sharp fronts and shocks, the L1 regularization technique performs more accurately than standard L2 regularization.
Resumo:
The water vapour continuum is characterised by absorption that varies smoothly with wavelength, from the visible to the microwave. It is present within the rotational and vibrational–rotational bands of water vapour, which consist of large numbers of narrow spectral lines, and in the many ‘windows’ between these bands. The continuum absorption in the window regions is of particular importance for the Earth’s radiation budget and for remote-sensing techniques that exploit these windows. Historically, most attention has focused on the 8–12 μm (mid-infrared) atmospheric window, where the continuum is relatively well-characterised, but there have been many fewer measurements within bands and in other window regions. In addition, the causes of the continuum remain a subject of controversy. This paper provides a brief historical overview of the development of understanding of the continuum and then reviews recent developments, with a focus on the near-infrared spectral region. Recent laboratory measurements in near-infrared windows, which reveal absorption typically an order of magnitude stronger than in widely used continuum models, are shown to have important consequences for remote-sensing techniques that use these windows for retrieving cloud properties.
Resumo:
For data assimilation in numerical weather prediction, the initial forecast-error covariance matrix Pf is required. For variational assimilation it is particularly important to prescribe an accurate initial matrix Pf, since Pf is either static (in the 3D-Var case) or constant at the beginning of each assimilation window (in the 4D-Var case). At large scales the atmospheric flow is well approximated by hydrostatic balance and this balance is strongly enforced in the initial matrix Pf used in operational variational assimilation systems such as that of the Met Office. However, at convective scales this balance does not necessarily hold any more. Here we examine the extent to which hydrostatic balance is valid in the vertical forecast-error covariances for high-resolution models in order to determine whether there is a need to relax this balance constraint in convective-scale data assimilation. We use the Met Office Global and Regional Ensemble Prediction System (MOGREPS) and a 1.5 km resolution version of the Unified Model for a case study characterized by the presence of convective activity. An ensemble of high-resolution forecasts valid up to three hours after the onset of convection is produced. We show that at 1.5 km resolution hydrostatic balance does not hold for forecast errors in regions of convection. This indicates that in the presence of convection hydrostatic balance should not be enforced in the covariance matrix used for variational data assimilation at this scale. The results show the need to investigate covariance models that may be better suited for convective-scale data assimilation. Finally, we give a measure of the balance present in the forecast perturbations as a function of the horizontal scale (from 3–90 km) using a set of diagnostics. Copyright © 2012 Royal Meteorological Society and British Crown Copyright, the Met Office
Resumo:
Linear models of bidirectional reflectance distribution are useful tools for understanding the angular variability of surface reflectance as observed by medium-resolution sensors such as the Moderate Resolution Imaging Spectrometer. These models are operationally used to normalize data to common view and illumination geometries and to calculate integral quantities such as albedo. Currently, to compensate for noise in observed reflectance, these models are inverted against data collected during some temporal window for which the model parameters are assumed to be constant. Despite this, the retrieved parameters are often noisy for regions where sufficient observations are not available. This paper demonstrates the use of Lagrangian multipliers to allow arbitrarily large windows and, at the same time, produce individual parameter sets for each day even for regions where only sparse observations are available.
Resumo:
This dissertation deals with aspects of sequential data assimilation (in particular ensemble Kalman filtering) and numerical weather forecasting. In the first part, the recently formulated Ensemble Kalman-Bucy (EnKBF) filter is revisited. It is shown that the previously used numerical integration scheme fails when the magnitude of the background error covariance grows beyond that of the observational error covariance in the forecast window. Therefore, we present a suitable integration scheme that handles the stiffening of the differential equations involved and doesn’t represent further computational expense. Moreover, a transform-based alternative to the EnKBF is developed: under this scheme, the operations are performed in the ensemble space instead of in the state space. Advantages of this formulation are explained. For the first time, the EnKBF is implemented in an atmospheric model. The second part of this work deals with ensemble clustering, a phenomenon that arises when performing data assimilation using of deterministic ensemble square root filters in highly nonlinear forecast models. Namely, an M-member ensemble detaches into an outlier and a cluster of M-1 members. Previous works may suggest that this issue represents a failure of EnSRFs; this work dispels that notion. It is shown that ensemble clustering can be reverted also due to nonlinear processes, in particular the alternation between nonlinear expansion and compression of the ensemble for different regions of the attractor. Some EnSRFs that use random rotations have been developed to overcome this issue; these formulations are analyzed and their advantages and disadvantages with respect to common EnSRFs are discussed. The third and last part contains the implementation of the Robert-Asselin-Williams (RAW) filter in an atmospheric model. The RAW filter is an improvement to the widely popular Robert-Asselin filter that successfully suppresses spurious computational waves while avoiding any distortion in the mean value of the function. Using statistical significance tests both at the local and field level, it is shown that the climatology of the SPEEDY model is not modified by the changed time stepping scheme; hence, no retuning of the parameterizations is required. It is found the accuracy of the medium-term forecasts is increased by using the RAW filter.
Resumo:
The existence of hand-centred visual processing has long been established in the macaque premotor cortex. These hand-centred mechanisms have been thought to play some general role in the sensory guidance of movements towards objects, or, more recently, in the sensory guidance of object avoidance movements. We suggest that these hand-centred mechanisms play a specific and prominent role in the rapid selection and control of manual actions following sudden changes in the properties of the objects relevant for hand-object interactions. We discuss recent anatomical and physiological evidence from human and non-human primates, which indicates the existence of rapid processing of visual information for hand-object interactions. This new evidence demonstrates how several stages of the hierarchical visual processing system may be bypassed, feeding the motor system with hand-related visual inputs within just 70 ms following a sudden event. This time window is early enough, and this processing rapid enough, to allow the generation and control of rapid hand-centred avoidance and acquisitive actions, for aversive and desired objects, respectively
Resumo:
A frequently used diagram summarizing the annual- and global-mean energy budget of the earth and atmosphere indicates that the irradiance reaching the top of the atmosphere from the surface, through the midinfrared atmospheric window, is 40 W m−2; this can be compared to the total outgoing longwave radiation (OLR) of about 235 W m−2. The value of 40 W m−2 was estimated in an ad hoc manner. A more detailed calculation of this component, termed here the surface transmitted irradiance (STI), is presented, using a line-by-line radiation code and 3D climatologies of temperature, humidity, cloudiness, etc. No assumption is made as to the wavelengths at which radiation from the surface can reach the top of the atmosphere. The role of the water vapor continuum is highlighted. In clear skies, if the continuum is excluded, the global- and annual-mean STI is calculated to be about 100 W m−2 with a broad maximum throughout the tropics and subtropics. When the continuum is included, the clear-sky STI is reduced to 66 W m−2, with a distinctly different geographic distribution, with a minimum in the tropics and local peaks over subtropical deserts. The inclusion of clouds reduces the STI to about 22 W m−2. The actual value is likely somewhat smaller due to processes neglected here, and an STI value of 20 W m−2 (with an estimated uncertainty of about ±20%) is suggested to be much more realistic than the previous estimate of 40 W m−2. This indicates that less than one-tenth of the OLR originates directly from the surface.
Resumo:
The countries in West Africa (WA) are pushing for socio-economic development. The construction sector has an important part to play in helping to realise these aspirations. This necessitates an increased emphasis on research in the built environment, as a key contributor to developing capacity, knowledge and technologies for the sector. The West Africa Built Environment Research (WABER) conference was initiated in 2008. The objective was to: help young built environment researchers in West Africa (WA) to develop their research work and skills through constructive face-to-face interaction with their peers and experienced international academics; supply a platform for interaction among more senior academics and an outlet for disseminating their research work; and to serve as a vehicle for developing the built environment field in Africa. Three conferences have so far been organised, 2009 - 2011, bringing together ~300 academics, researchers and practitioners from the WA region. This paper draws on content analysis of the 189 papers in the proceedings of three conferences: 2009 (25); 2010 (57) and 2011 (107). These papers provide a window into current research priorities and trends and, thus, offer an opportunity to understand the kinds of research work undertaken by built environment researchers in West Africa. The aim is to illuminate the main research themes and methods that are currently pursued and the limitations thereof. The findings lay bare some of the many challenges that are faced by academics in WA and provide suggestions for alternative directions for future research and development work with indications of a potential research agenda.
Resumo:
The preparation, crystal structures and magnetic properties of two new isoelectronic and isomorphous formate-and nitrite-bridged 1D chains of Mn(III)-salen complexes, [Mn(salen)(HCOO)](n) (1) and [Mn(salen)(NO2)](n) (2), where salen is the dianion of N,N'-bis(salicylidene)-1,2-diaminoethane, are presented. The structures show that the salen ligand coordinates to the four equatorial sites of the metal ion and the formate or nitrite ions coordinate to the axial positions to bridge the Mn(III)-salen units through a syn-anti mu-1 kappa O:2 kappa O' coordination mode. Such a bridging mode is unprecedented in Mn(III) for formate and in any transition metal ion for nitrite. Variable-temperature magnetic susceptibility measurements of complexes 1 and 2 indicate the presence of ferromagnetic exchange interactions with J values of 0.0607 cm(-1) (for 1) and 0.0883 cm(-1) (for 2). The ac measurements indicate negligible frequency dependence for 1 whereas compound 2 exhibits a decrease of chi(ac)' and a concomitant increase of chi(ac)'' on elevating frequency around 2 K. This finding is an indication of slow magnetization reversal characteristic of single-chain magnets or spin-glasses. The mu-nitrito-1 kappa O:2 kappa O' bridge seems to be a potentially superior magnetic coupler to the formate bridge for the construction of single-molecule/-chain magnets as its coupling constant is greater and the chi(ac)' and chi(ac)'' show frequency dependence.
Resumo:
A focus on crisis provides a methodological window to understand how agrarian change shapes producer engagement in fair trade. This orientation challenges a seperation between the market and development, situating fair trade within global processes that incorporate agrarian histories of social change and conflict. Reframing crisis as a condition of agrarian life, rather than emphasizing its cyclical manifestation within the global economy, reveals how market-driven development encompasses the material conditions of peoples' existence in ambiguous and contradictory ways. Drawing on the case of coffee production in Nicaragua, experiences of crisis demonstrate that greater attention needs to be paid to the socioeconomic and political dimensions of development within regional commodity assemblages to address entrenched power relations and unequal access to land and resources. This questions moral certainties when examining the paradox of working in and against the market, and suggests that a better understanding of specific trajectories of development could improve fair trade's objective of enhancing producer livelihoods.
Resumo:
Efficient transport of stem/progenitor cells without affecting their survival and function is a key factor in any practical cell-based therapy. However, the current approach using liquid nitrogen for the transfer of stem cells requires a short delivery time window is technically challenging and financially expensive. The present study aims to use semipermeable alginate hydrogels (crosslinked by strontium) to encapsulate, store, and release stem cells, to replace the conventional cryopreservation method for the transport of therapeutic cells within world-wide distribution time frame. Human mesenchymal stem cell (hMSC) and mouse embryonic stem cells (mESCs) were successfully stored inside alginate hydrogels for 5 days under ambient conditions in an air-tight environment (sealed cryovial). Cell viability, of the cells extracted from alginate gel, gave 74% (mESC) and 80% (hMSC) survival rates, which compared favorably to cryopreservation. More importantly, the subsequent proliferation rate and detection of common stem cell markers (both in mRNA and protein level) from hMSCs and mESCs retrieved from alginate hydrogels were also comparable to (if not better than) results gained following cryopreservation. In conclusion, this new and simple application of alginate hydrogel encapsulation may offer a cheap and robust alternative to cryopreservation for the transport and storage of stem cells for both clinical and research purposes.