74 resultados para Wild turkey
Resumo:
Recent work suggests that the environment experienced in early life can alter life histories in wild populations [1, 2, 3, 4 and 5], but our understanding of the processes involved remains limited [6 and 7]. Since anthropogenic environmental change is currently having a major impact on wild populations [8], this raises the possibility that life histories may be influenced by human activities that alter environmental conditions in early life. Whether this is the case and the processes involved remain unexplored in wild populations. Using 23 years of longitudinal data on the Mauritius kestrel (Falco punctatus), a tropical forest specialist, we found that females born in territories affected by anthropogenic habitat change shifted investment in reproduction to earlier in life at the expense of late life performance. They also had lower survival rates as young adults. This shift in life history strategy appears to be adaptive, because fitness was comparable to that of other females experiencing less anthropogenic modification in their natal environment. Our results suggest that human activities can leave a legacy on wild birds through natal environmental effects. Whether these legacies have a detrimental effect on populations will depend on life history responses and the extent to which these reduce individual fitness.
Supplementary feeding of wild birds indirectly affects ground beetle populations in suburban gardens
Resumo:
Supplementary feeding of wild birds by domestic garden-holders is a globally widespread and popular form of human–wildlife interaction, particularly in urban areas. Vast amounts of energy are thus being added to garden ecosystems. However, the potential indirect effects of this activity on non-avian species have been little studied to date, with the only two previous studies taking place under experimentally manipulated conditions. Here we present the first evidence of a localised depletive effect of wild bird feeding on ground beetles (Coleoptera: Carabidae) in suburban gardens under the usual feeding patterns of the garden-holders. We trapped significantly fewer ground beetles directly under bird-feeding stations than in matched areas of habitat away from feeders. Video analysis also revealed significantly higher activity by ground-foraging birds under the feeding stations than in the control areas. Small mammal trapping revealed no evidence that these species differ in abundance between gardens with and without bird feeders. We therefore suggest that local increases in ground-foraging activity by bird species whose diets encompass arthropods as well as seed material are responsible for the reduction in ground beetle numbers. Our work therefore illustrates that providing food for wild birds can have indirect negative effects on palatable prey species under typical conditions.
Resumo:
Samples containing red pigment have been collected from two different archaeological sites dating to the Neolithic (Çatalhöyük in Turkey and Sheikh-e Abad in Iran) and have been analysed by a range of techniques. Sub-samples were examined by IR spectroscopy and X-ray diffraction, whilst thin sections were studied using optical polarising microscopy, synchrotron based IR microscopy and environmental scanning electron microscopy with energy dispersive X-ray analysis. Thin layers of red paint in a wall painting from Çatalhöyük were found to contain ochre (hematite and clay) as well as an unexpected component, grains of red and colourless obsidian, which have not been identified in any previous studies of the wall paintings at Çatalhöyük. These small grains of obsidian may have improved the reflective properties of the paint and made the artwork more vivid in the darkness of the buildings. Analysis of a roughly shaped ball of red sediment found on a possible working surface at Sheikh-e Abad revealed that the cause of the red colouring was the mineral hematite, which was probably from a source of terra rossa sediment in the local area. The results of this work suggest it is unlikely that this had been altered by the Neolithic people through mixing with other minerals.
Resumo:
1.Habitat conversion for agriculture is a major driver of biodiversity loss, but our understanding of the demographic processes involved remains poor. We typically investigate the impacts of agriculture in isolation even though populations are likely to experience multiple, concurrent changes in the environment (e.g. land and climate change). Drivers of environmental change may interact to affect demography but the mechanisms have yet to be explored fully in wild populations. 2.Here, we investigate the mechanisms linking agricultural land-use with breeding success using long-term data for the formerly Critically Endangered Mauritius kestrel Falco punctatus; a tropical forest specialist that also occupies agricultural habitats. We specifically focused on the relationship between breeding success, agriculture and the timing of breeding because the latter is sensitive to changes in climatic conditions (spring rainfall), and enables us to explore the interactive effects of different (land and climate) drivers of environmental change. 3.Breeding success, measured as egg survival to fledging, declines seasonally in this population, but we found that the rate of this decline became increasingly rapid as the area of agriculture around a nest site increased. If the relationship between breeding success and agriculture was used in isolation to estimate the demographic impact of agriculture it would significantly under-estimate breeding success in dry (early) springs, and over-estimate breeding success in wet (late) springs. 4.Analysis of prey delivered to nests suggests that the relationship between breeding success and agriculture might be due, in part, to spatial variation in the availability of native, arboreal geckos. 5.Synthesis and applications. Agriculture modifies the seasonal decline in breeding success in this population. As springs are becoming wetter in our study area and since the kestrels breed later in wetter springs, the impact of agriculture on breeding success will become worse over time. Our results suggest that forest restoration designed to reduce the detrimental impacts of agriculture on breeding may also help reduce the detrimental effects of breeding late due to wetter springs. Our results therefore highlight the importance of considering the interactive effects of environmental change when managing wild populations.
Resumo:
Wild bird feeding is popular in domestic gardens across the world. Nevertheless, there is surprisingly little empirical information on certain aspects of the activity and no year-round quantitative records of the amounts and nature of the different foods provided in individual gardens. We sought to characterise garden bird feeding in a large UK urban area in two ways. First, we conducted face-to-face questionnaires with a representative cross-section of residents. Just over half fed birds, the majority doing so year round and at least weekly. Second, a two-year study recorded all foodstuffs put out by households on every provisioning occasion. A median of 628 kcal/garden/day was given. Provisioning level was not significantly influenced by weather or season. Comparisons between the data sets revealed significantly less frequent feeding amongst these ‘keen’ feeders than the face-to-face questionnaire respondents, suggesting that one-off questionnaires may overestimate provisioning frequency. Assuming 100% uptake, the median provisioning level equates to sufficient supplementary resources across the UK to support 196 million individuals of a hypothetical average garden-feeding bird species (based on 10 common UK garden-feeding birds’ energy requirements). Taking the lowest provisioning level recorded (101 kcal/day) as a conservative measure, 31 million of these average individuals could theoretically be supported.
Resumo:
Wall plaster sequences from the Neolithic town of Çatalhöyük have been analysed and compared to three types of natural sediment found in the vicinity of the site, using a range of analytical techniques. Block samples containing the plaster sequences were removed from the walls of several different buildings on the East Mound. Sub-samples were examined by IR spectroscopy, X-ray diffraction and X-ray fluorescence to determine the overall mineralogical and elemental composition, whilst thin sections were studied using optical polarising microscopy, IR Microscopy and Environmental Scanning Electron Microscopy with Energy Dispersive X-ray analysis. The results of this study have shown that there are two types of wall plaster found in the sequences and that the sediments used to produce these were obtained from at least two distinct sources. In particular, the presence of clay, calcite and magnesian calcite in the foundation plasters suggested that these were prepared predominantly from a marl source. On the other hand, the finishing plasters were found to contain dolomite with a small amount of clay and no calcite, revealing that softlime was used in their preparation. Whilst marl is located directly below and around Çatalhöyük, the nearest source of softlime is 6.5 km away, an indication that the latter was important to the Neolithic people, possibly due to the whiter colour (5Y 8/1) of this sediment. Furthermore, the same two plaster types were found on each wall of Building 49, the main building studied in this research, and in all five buildings investigated, suggesting that the use of these sources was an established practice for the inhabitants of several different households across the site.
Resumo:
Mounting evidence exists that variations in sulphur content in stalagmites are closely linked to changes in volcanic or anthropogenic atmospheric sulphur. The strong dependency of sulphur on soil pH and ecosystem storage, however, can result in a delay of several years to decades in the registration of volcanic eruptions and anthropogenic emissions by stalagmites. Here we present synchrotron-radiation based trace element analysis performed on a precisely-dated section of a stalagmite from Sofular Cave in Northern Turkey. As this section covers the time interval of the intensively studied Minoan volcanic eruption between 1600 and 1650 BC, we can test whether this vigorous eruption can be traced in a stalagmite. Of all measured trace elements, only bromine shows a clear short-lived peak at 1621±251621±25 BC, whereas sulphur and molybdenum show peaks later at 1617±251617±25 and 1589±251589±25 respectively. We suggest that all trace element peaks are related to the Minoan eruption, whereas the observed phasing of bromine, molybdenum and sulphur is related to differences in their retention rates in the soil above Sofular Cave. For the first time, we can show that bromine appears to be an ideal volcanic tracer in stalagmites, as it is a prominent volatile component in volcanic eruptions, can be easily leached in soils and rapidly transferred from the atmosphere through the soil and bedrock into the cave and stalagmite respectively. Highly resolved oxygen and carbon isotope profiles indicate that the Minoan eruption had no detectable climatic and environmental impact in Northern Turkey.
Resumo:
There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.
Resumo:
Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs’ usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and flower availability. Additionally, testing SDMs with field surveys should involve multiple collection techniques.
Resumo:
Purpose: Previously, anthocyanin-rich blueberry treatments have shown positive effects on cognition in both animals and human adults. However, little research has considered whether these benefits transfer to children. Here we describe an acute time-course and dose–response investigation considering whether these cognitive benefits extend to children. Methods: Using a double-blind cross-over design, on three occasions children (n = 21; 7–10 years) consumed placebo (vehicle) or blueberry drinks containing 15 or 30 g freeze-dried wild blueberry (WBB) powder. A cognitive battery including tests of verbal memory, word recognition, response interference, response inhibition and levels of processing was performed at baseline, and 1.15, 3 and 6 h following treatment. Results: Significant WBB-related improvements included final immediate recall at 1.15 h, delayed word recognition sustained over each period, and accuracy on cognitively demanding incongruent trials in the interference task at 3h. Importantly, across all measures, cognitive performance improved, consistent with a dose–response model, with the best performance following 30 g WBB and the worst following vehicle. Conclusion: Findings demonstrate WBB-related cognitive improvements in 7- to 10-year-old children. These effects would seem to be particularly sensitive to the cognitive demand of task.
Resumo:
1. Bee populations and other pollinators face multiple, synergistically acting threats, which have led to population declines, loss of local species richness and pollination services, and extinctions. However, our understanding of the degree, distribution and causes of declines is patchy, in part due to inadequate monitoring systems, with the challenge of taxonomic identification posing a major logistical barrier. Pollinator conservation would benefit from a high-throughput identification pipeline. 2. We show that the metagenomic mining and resequencing of mitochondrial genomes (mitogenomics) can be applied successfully to bulk samples of wild bees. We assembled the mitogenomes of 48 UK bee species and then shotgun-sequenced total DNA extracted from 204 whole bees that had been collected in 10 pan-trap samples from farms in England and been identified morphologically to 33 species. Each sample data set was mapped against the 48 reference mitogenomes. 3. The morphological and mitogenomic data sets were highly congruent. Out of 63 total species detections in the morphological data set, the mitogenomic data set made 59 correct detections (93�7% detection rate) and detected six more species (putative false positives). Direct inspection and an analysis with species-specific primers suggested that these putative false positives were most likely due to incorrect morphological IDs. Read frequency significantly predicted species biomass frequency (R2 = 24�9%). Species lists, biomass frequencies, extrapolated species richness and community structure were recovered with less error than in a metabarcoding pipeline. 4. Mitogenomics automates the onerous task of taxonomic identification, even for cryptic species, allowing the tracking of changes in species richness and istributions. A mitogenomic pipeline should thus be able to contain costs, maintain consistently high-quality data over long time series, incorporate retrospective taxonomic revisions and provide an auditable evidence trail. Mitogenomic data sets also provide estimates of species counts within samples and thus have potential for tracking population trajectories.
Resumo:
In 2013, an opportunity arose in England to develop an agri-environment package for wild pollinators, as part of the new Countryside Stewardship scheme launched in 2015. It can be understood as a 'policy window', a rare and time-limited opportunity to change policy, supported by a narrative about pollinator decline and widely supported mitigating actions. An agri-environment package is a bundle of management options that together supply sufficient resources to support a target group of species. This paper documents information that was available at the time to develop such a package for wild pollinators. Four questions needed answering: (1) Which pollinator species should be targeted? (2) Which resources limit these species in farmland? (3) Which management options provide these resources? (4) What area of each option is needed to support populations of the target species? Focussing on wild bees, we provide tentative answers that were used to inform development of the package. There is strong evidence that floral resources can limit wild bee populations, and several sources of evidence identify a set of agri-environment options that provide flowers and other resources for pollinators. The final question could only be answered for floral resources, with a wide range of uncertainty. We show that the areas of some floral resource options in the basic Wild Pollinator and Farmland Wildlife Package (2% flower-rich habitat and 1 km flowering hedgerow), are sufficient to supply a set of six common pollinator species with enough pollen to feed their larvae at lowest estimates, using minimum values for estimated parameters where a range was available. We identify key sources of uncertainty, and stress the importance of keeping the Package flexible, so it can be revised as new evidence emerges about how to achieve the policy aim of supporting pollinators on farmland.