63 resultados para Variability of surface wind field


Relevância:

100.00% 100.00%

Publicador:

Resumo:

10 second resolution ionospheric convection data covering the invariant latitude range from 71° to 76°, obtained by using the EISCAT UHF and VHF radars, are combined with optical data from Ny Ålesund during a sequence of auroral transients in the post-noon sector (∼ 15 MLT). Satellite observations of polar cap convection patterns suggest negative BZ and BY components of the interplanetary magnetic field. Burst-like enhancements of westward (sunward) post-noon convection were accompanied by eastward moving auroral forms at higher latitudes, above the convection reversal boundary. In this case the background convection was weak, whereas the integrated potential drop across the radar field-of-view associated with the westward flow bursts was typically ∼ 20-35 kV. The auroral phenomenon consists of a series of similar events with a mean repetition period of 8 min. A close correlation between the auroral activity and convection enhancements in the cleft ionosphere is demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basic concepts of the form of high-latitude ionospheric flows and their excitation and decay are discussed in the light of recent high time-resolution measurements made by ground-based radars. It is first pointed out that it is in principle impossible to adequately parameterize these flows by any single quantity derived from concurrent interplanetary conditions. Rather, even at its simplest, the flow must be considered to consist of two basic time-dependent components. The first is the flow driven by magnetopause coupling processes alone, principally by dayside reconnection. These flows may indeed be reasonably parameterized in terms of concurrent near-Earth interplanetary conditions, principally by the interplanetary magnetic field (IMF) vector. The second is the flow driven by tail reconnection alone. As a first approximation these flows may also be parameterized in terms of interplanetary conditions, principally the north-south component of the IMF, but with a delay in the flow response of around 30-60 min relative to the IMF. A delay in the tail response of this order must be present due to the finite speed of information propagation in the system, and we show how "growth" and "decay" of the field and flow configuration then follow as natural consequences. To discuss the excitation and decay of the two reconnection-driven components of the flow we introduce that concept of a flow-free equilibrium configuration for a magnetosphere which contains a given (arbitrary) amount of open flux. Reconnection events act either to create or destroy open flux, thus causing departures of the system from the equilibrium configuration. Flow is then excited which moves the system back towards equilibrium with the changed amount of open flux. We estimate that the overall time scale associated with the excitation and decay of the flow is about 15 min. The response of the system to both impulsive (flux transfer event) and continuous reconnection is discussed in these terms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the processes responsible for the intraseasonal displacements of the eastern edge of the western Pacific warm pool (WPEE), which appear to play a role in the onset and development of El Niño events. We use 25 years of output from an ocean general circulation model experiment that is able to accurately capture the observed displacements of the WPEE, sea level anomalies, and upper ocean zonal currents at intraseasonal time scales in the western and central Pacific Ocean. Our results confirm that WPEE displacements driven by westerly wind events (WWEs) are largely controlled by zonal advection. This paper has also two novel findings: first, the zonal current anomalies responsible for the WPEE advection are driven primarily by local wind stress anomalies and not by intraseasonal wind-forced Kelvin waves as has been shown in most previous studies. Second, we find that intraseasonal WPEE fluctuations that are not related to WWEs are generally caused by intraseasonal variations in net heat flux, in contrast to interannual WPEE displacements that are largely driven by zonal advection. This study hence raises an interesting question: can surface heat flux-induced zonal WPEE motions contribute to El Niño–Southern Oscillation evolution, as WWEs have been shown to be able to do?