90 resultados para Two-dimensional numerical simulation
Resumo:
Results are presented of a study of a performance of various track-side railway noise barriers, determined by using a two- dimensional numerical boundary element model. The basic model uses monopole sources and has been adapted to allow the sources to exhibit dipole-type radiation characteristics. A comparison of boundary element predictions of the performance of simple barriers and vehicle shapes is made with results obtained by using the standard U.K. prediction method. The results obtained from the numerical model indicate that modifying the source to exhibit dipole characteristics becomes more significant as the height of the barrier increases, and suggest that for any particular shape, absorbent barriers provide much better screening efficiency than the rigid equivalent. The cross-section of the rolling stock significantly affects the performance of rigid barriers. If the position of the upper edge is fixed, the results suggest that simple absorptive barriers provide more effective screening than tilted barriers. The addition of multiple edges to a barrier provides additional insertion loss without any increase in barrier height.
Resumo:
A generalized asymptotic expansion in the far field for the problem of cylindrical wave reflection at a homogeneous impedance plane is derived. The expansion is shown to be uniformly valid over all angles of incidence and values of surface impedance, including the limiting cases of zero and infinite impedance. The technique used is a rigorous application of the modified steepest descent method of Ot
Resumo:
The energy-Casimir stability method, also known as the Arnold stability method, has been widely used in fluid dynamical applications to derive sufficient conditions for nonlinear stability. The most commonly studied system is two-dimensional Euler flow. It is shown that the set of two-dimensional Euler flows satisfying the energy-Casimir stability criteria is empty for two important cases: (i) domains having the topology of the sphere, and (ii) simply-connected bounded domains with zero net vorticity. The results apply to both the first and the second of Arnold’s stability theorems. In the spirit of Andrews’ theorem, this puts a further limitation on the applicability of the method. © 2000 American Institute of Physics.
Resumo:
The non-quadratic conservation laws of the two-dimensional Euler equations are used to show that the gravest modes in a doubly-periodic domain with aspect ratio L = 1 are stable up to translations (or structurally stable) for finite-amplitude disturbances. This extends a previous result based on conservation of energy and enstrophy alone. When L 1, a saturation bound is established for the mode with wavenumber |k| = L −1 (the next-gravest mode), which is linearly unstable. The method is applied to prove nonlinear structural stability of planetary wave two on a rotating sphere.
Resumo:
Arnol'd's second hydrodynamical stability theorem, proven originally for the two-dimensional Euler equations, can establish nonlinear stability of steady flows that are maxima of a suitably chosen energy-Casimir invariant. The usual derivations of this theorem require an assumption of zero disturbance circulation. In the present work an analogue of Arnol'd's second theorem is developed in the more general case of two-dimensional quasi-geostrophic flow, with the important feature that the disturbances are allowed to have non-zero circulation. New nonlinear stability criteria are derived, and explicit bounds are obtained on both the disturbance energy and potential enstrophy which are expressed in terms of the initial disturbance fields. While Arnol'd's stability method relies on the second variation of the energy-Casimir invariant being sign-definite, the new criteria can be applied to cases where the second variation is sign-indefinite because of the disturbance circulations. A version of Andrews' theorem is also established for this problem.
Resumo:
Exact, finite-amplitude, local wave-activity conservation laws are derived for disturbances to steady flows in the context of the two-dimensional anelastic equations. The conservation laws are expressed entirely in terms of Eulerian quantities, and have the property that, in the limit of a small-amplitude, slowly varying, monochromatic wave train, the wave-activity density A and flux F, when averaged over phase, satisfy F = cgA where cg is the group velocity of the waves. For nonparallel steady flows, the only conserved wave activity is a form of disturbance pseudoenergy; when the steady flow is parallel, there is in addition a conservation law for the disturbance pseudomomentum. The above results are obtained not only for isentropic background states (which give the so-called “deep form” of the anelastic equations), but also for arbitrary background potential-temperature profiles θ0(z) so long as the variation in θ0(z) over the depth of the fluid is small compared with θ0 itself. The Hamiltonian structure of the equations is established in both cases, and its symmetry properties discussed. An expression for available potential energy is also derived that, for the case of a stably stratified background state (i.e., dθ0/dz > 0), is locally positive definite; the expression is valid for fully three-dimensional flow. The counterparts to results for the two-dimensional Boussinesq equations are also noted.
Resumo:
Faced with the strongly nonlinear and apparently random behaviour of the energy-containing scales in the atmosphere, geophysical fluid dynamicists have attempted to understand the synoptic-scale atmospheric flow within the context of two-dimensional homogeneous turbulence theory (e.g. FJØRTOFT [1]; LEITH [2]). However atmospheric observations (BOER and SHEPHERD [3] and Fig.1) show that the synoptic-scale transient flow evolves in the presence of a planetary-scale, quasi-stationary background flow which is approximately zonal (east-west). Classical homogeneous 2-D turbulence theory is therefore not strictly applicable to the transient flow. One is led instead to study 2-D turbulence in the presence of a large-scale (barotropically stable) zonal jet inhomogeneity.
Resumo:
Global FGGE data are used to investigate several aspects of large-scale turbulence in the atmosphere. The approach follows that for two-dimensional, nondivergent turbulent flows which are homogeneous and isotropic on the sphere. Spectra of kinetic energy, enstrophy and available potential energy are obtained for both the stationary and transient parts of the flow. Nonlinear interaction terms and fluxes of energy and enstrophy through wavenumber space are calculated and compared with the theory. A possible method of parameterizing the interactions with unresolved scales is considered. Two rather different flow regimes are found in wavenumber space. The high-wavenumber regime is dominated by the transient components of the flow and exhibits, at least approximately, several of the conditions characterizing homogeneous and isotropic turbulence. This region of wavenumber space also displays some of the features of an enstrophy-cascading inertial subrange. The low-wavenumber region, on the other hand, is dominated by the stationary component of the flow, exhibits marked anisotropy and, in contrast to the high-wavenumber regime, displays a marked change between January and July.
Resumo:
Consideration of the geometrical features of the functional groups present in furosemide has enabled synthesis of a series of ternary co-crystals with predictable structural features, containing a robust asymmetric two-dimensional network.
Resumo:
The transport of ionospheric ions from a source in the polar cleft ionosphere through the polar magnetosphere is investigated using a two-dimensional, kinetic, trajectory-based code. The transport model includes the effects of gravitation, longitudinal magnetic gradient force, convection electric fields, and parallel electric fields. Individual ion trajectories as well as distribution functions and resulting bulk parameters of density, parallel average energy, and parallel flux for a presumed cleft ionosphere source distribution are presented for various conditions to illustrate parametrically the dependences on source energies, convection electric field strengths, ion masses, and parallel electric field strengths. The essential features of the model are consistent with the concept of a cleft-based ion fountain supplying ionospheric ions to the polar magnetosphere, and the resulting plasma distributions and parameters are in general agreement with recent low-energy ion measurements from the DE 1 satellite.
Resumo:
We study the scaling properties and Kraichnan–Leith–Batchelor (KLB) theory of forced inverse cascades in generalized two-dimensional (2D) fluids (α-turbulence models) simulated at resolution 8192x8192. We consider α=1 (surface quasigeostrophic flow), α=2 (2D Euler flow) and α=3. The forcing scale is well resolved, a direct cascade is present and there is no large-scale dissipation. Coherent vortices spanning a range of sizes, most larger than the forcing scale, are present for both α=1 and α=2. The active scalar field for α=3 contains comparatively few and small vortices. The energy spectral slopes in the inverse cascade are steeper than the KLB prediction −(7−α)/3 in all three systems. Since we stop the simulations well before the cascades have reached the domain scale, vortex formation and spectral steepening are not due to condensation effects; nor are they caused by large-scale dissipation, which is absent. One- and two-point p.d.f.s, hyperflatness factors and structure functions indicate that the inverse cascades are intermittent and non-Gaussian over much of the inertial range for α=1 and α=2, while the α=3 inverse cascade is much closer to Gaussian and non-intermittent. For α=3 the steep spectrum is close to that associated with enstrophy equipartition. Continuous wavelet analysis shows approximate KLB scaling ℰ(k)∝k−2 (α=1) and ℰ(k)∝k−5/3 (α=2) in the interstitial regions between the coherent vortices. Our results demonstrate that coherent vortex formation (α=1 and α=2) and non-realizability (α=3) cause 2D inverse cascades to deviate from the KLB predictions, but that the flow between the vortices exhibits KLB scaling and non-intermittent statistics for α=1 and α=2.
Resumo:
Among existing remote sensing applications, land-based X-band radar is an effective technique to monitor the wave fields, and spatial wave information could be obtained from the radar images. Two-dimensional Fourier Transform (2-D FT) is the common algorithm to derive the spectra of radar images. However, the wave field in the nearshore area is highly non-homogeneous due to wave refraction, shoaling, and other coastal mechanisms. When applied in nearshore radar images, 2-D FT would lead to ambiguity of wave characteristics in wave number domain. In this article, we introduce two-dimensional Wavelet Transform (2-D WT) to capture the non-homogeneity of wave fields from nearshore radar images. The results show that wave number spectra by 2-D WT at six parallel space locations in the given image clearly present the shoaling of nearshore waves. Wave number of the peak wave energy is increasing along the inshore direction, and dominant direction of the spectra changes from South South West (SSW) to West South West (WSW). To verify the results of 2-D WT, wave shoaling in radar images is calculated based on dispersion relation. The theoretical calculation results agree with the results of 2-D WT on the whole. The encouraging performance of 2-D WT indicates its strong capability of revealing the non-homogeneity of wave fields in nearshore X-band radar images.