100 resultados para Temperatures and wind
Resumo:
The surface drag force produced by trapped lee waves and upward propagating waves in non-hydrostatic stratified flow over a mountain ridge is explicitly calculated using linear theory for a two-layer atmosphere with piecewise-constant static stability and wind speed profiles. The behaviour of the drag normalized by its hydrostatic single-layer reference value is investigated as a function of the ratio of the Scorer parameters in the two layers l_2/l_1 and of the corresponding dimensionless interface height l_1 H, for selected values of the dimensionless ridge width l_1 a and ratio of wind speeds in the two layers. When l_2/l_1 → 1, the propagating wave drag approaches 1 in approximately hydrostatic conditions, and the trapped lee wave drag vanishes. As l_2/l_1 decreases, the propagating wave drag progressively displays an oscillatory behaviour with l_1 H, with maxima of increasing magnitude due to constructive interference of reflected waves in the lower layer. The trapped lee wave drag shows localized maxima associated with each resonant trapped lee wave mode, occurring for small l_2/l_1 and slightly higher values of l_1 H than the propagating wave drag maxima. As l1a decreases, i.e. the flow becomes more non-hydrostatic, the propagating wave drag decreases and the regions of non-zero trapped lee wave drag extend to higher l_2/l_1. These results are confirmed by numerical simulations for l_2/l_1 = 0.2. In parameter ranges of meteorological relevance, the trapped lee wave drag may have a magnitude comparable to that of propagating wave drag, and be larger than the reference single-layer drag. This may have implications for drag parametrization in global climate and weather-prediction models.
Resumo:
The Intergovernmental Panel on Climate Change fourth assessment report, published in 2007 came to a more confident assessment of the causes of global temperature change than previous reports and concluded that ‘it is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent except Antarctica.’ Since then, warming over Antarctica has also been attributed to human influence, and further evidence has accumulated attributing a much wider range of climate changes to human activities. Such changes are broadly consistent with theoretical understanding, and climate model simulations, of how the planet is expected to respond. This paper reviews this evidence from a regional perspective to reflect a growing interest in understanding the regional effects of climate change, which can differ markedly across the globe. We set out the methodological basis for detection and attribution and discuss the spatial scales on which it is possible to make robust attribution statements. We review the evidence showing significant human-induced changes in regional temperatures, and for the effects of external forcings on changes in the hydrological cycle, the cryosphere, circulation changes, oceanic changes, and changes in extremes. We then discuss future challenges for the science of attribution. To better assess the pace of change, and to understand more about the regional changes to which societies need to adapt, we will need to refine our understanding of the effects of external forcing and internal variability
Resumo:
Large, well-documented wildfires have recently generated worldwide attention, and raised concerns about the impacts of humans and climate change on wildfire regimes. However, comparatively little is known about the patterns and driving forces of global fire activity before the twentieth century. Here we compile sedimentary charcoal records spanning six continents to document trends in both natural and anthropogenic biomass burning for the past two millennia. We find that global biomass burning declined from AD 1 to 1750, before rising sharply between 1750 and 1870. Global burning then declined abruptly after 1870. The early decline in biomass burning occurred in concert with a global cooling trend and despite a rise in the human population. We suggest the subsequent rise was linked to increasing human influences, such as population growth and land-use changes. Our compilation suggests that the final decline occurred despite increasing air temperatures and population. We attribute this reduction in the amount of biomass burned over the past 150 years to the global expansion of intensive grazing, agriculture and fire management.
Resumo:
Simulations of the stratosphere from thirteen coupled chemistry-climate models (CCMs) are evaluated to provide guidance for the interpretation of ozone predictions made by the same CCMs. The focus of the evaluation is on how well the fields and processes that are important for determining the ozone distribution are represented in the simulations of the recent past. The core period of the evaluation is from 1980 to 1999 but long-term trends are compared for an extended period (1960–2004). Comparisons of polar high-latitude temperatures show that most CCMs have only small biases in the Northern Hemisphere in winter and spring, but still have cold biases in the Southern Hemisphere spring below 10 hPa. Most CCMs display the correct stratospheric response of polar temperatures to wave forcing in the Northern, but not in the Southern Hemisphere. Global long-term stratospheric temperature trends are in reasonable agreement with satellite and radiosonde observations. Comparisons of simulations of methane, mean age of air, and propagation of the annual cycle in water vapor show a wide spread in the results, indicating differences in transport. However, for around half the models there is reasonable agreement with observations. In these models the mean age of air and the water vapor tape recorder signal are generally better than reported in previous model intercomparisons. Comparisons of the water vapor and inorganic chlorine (Cly) fields also show a large intermodel spread. Differences in tropical water vapor mixing ratios in the lower stratosphere are primarily related to biases in the simulated tropical tropopause temperatures and not transport. The spread in Cly, which is largest in the polar lower stratosphere, appears to be primarily related to transport differences. In general the amplitude and phase of the annual cycle in total ozone is well simulated apart from the southern high latitudes. Most CCMs show reasonable agreement with observed total ozone trends and variability on a global scale, but a greater spread in the ozone trends in polar regions in spring, especially in the Arctic. In conclusion, despite the wide range of skills in representing different processes assessed here, there is sufficient agreement between the majority of the CCMs and the observations that some confidence can be placed in their predictions.
Resumo:
We synthesize existing sedimentary charcoal records to reconstruct Holocene fire history at regional, continental and global scales. The reconstructions are compared with the two potential controls of burning at these broad scales – changes in climate and human activities – to assess their relative importance on trends in biomass burning. Here we consider several hypotheses that have been advanced to explain the Holocene record of fire, including climate, human activities and synergies between the two. Our results suggest that 1) episodes of high fire activity were relatively common in the early Holocene and were consistent with climate changes despite low global temperatures and low levels of biomass burning globally; 2) there is little evidence from the paleofire record to support the Early Anthropocene Hypothesis of human modification of the global carbon cycle; 3) there was a nearly-global increase in fire activity from 3 to 2 ka that is difficult to explain with either climate or humans, but the widespread and synchronous nature of the increase suggests at least a partial climate forcing; and 4) burning during the past century generally decreased but was spatially variable; it declined sharply in many areas, but there were also large increases (e.g., Australia and parts of Europe). Our analysis does not exclude an important role for human activities on global biomass burning during the Holocene, but instead provides evidence for a pervasive influence of climate across multiple spatial and temporal scales.
Resumo:
We present ozone loss estimated from airborne measurements taken during January–February and March in the Arctic winter 2002/2003. The first half of the winter was characterized by unusually cold temperatures and the second half by a major stratospheric sudden warming around 15–18 January 2003. The potential vorticity maps show a vortex split in the lower stratosphere during the major warming (MW) in late January and during the minor warming in mid-February due to wave 1 amplification. However, the warming can be termed as a vortex displacement event as there was no vortex split during the MW period at 10 hPa. Very low temperatures, large areas of polar stratospheric clouds (PSCs), and high chlorine activation triggered significant ozone loss in the early winter, as the vortex moved to the midlatitude regions. The ozone depletion derived from the ASUR measurements sampled inside the vortex, in conjunction with the Mimosa-Chim model tracer, shows a maximum of 1.3 ± 0.2 ppmv at 450–500 K by late March. The partial column loss derived from the ASUR ozone profiles reaches up to 61 ± 4 DU in 400–550 K in the same period. The evolution of ozone and ozone loss assessed from the ASUR measurements is in very good agreement with POAM observations. The reduction in ozone estimated from the POAM measurements shows a similar maximum of 1.3 ± 0.2 ppmv at 400–500 K or 63 ± 4 DU in 400–550 K in late March. Our study reveals that the Arctic winter 2002/2003 was unique as it had three minor warmings and a MW, yet showed large loss in ozone. No such feature was observed in any other Arctic winter in the 1989–2010 period. In addition, an unusually large ozone loss in December, around 0.5 ± 0.2 ppmv at 450–500 K or 12 ± 1 DU in 400–550 K, was estimated for the first time in the Arctic. A careful and detailed diagnosis with all available published results for this winter exhibits an average ozone loss of 1.5 ± 0.3 ppmv at 450–500 K or 65 ± 5 DU in 400–550 K by the end of March, which exactly matches the ozone depletion derived from the ASUR, POAM and model data. The early ozone loss together with considerable loss afterwards put the warm Arctic winter 2002/2003 amongst the moderately cold winters in terms of the significance of the ozone loss.
Resumo:
The occurrence of mid-latitude windstorms is related to strong socio-economic effects. For detailed and reliable regional impact studies, large datasets of high-resolution wind fields are required. In this study, a statistical downscaling approach in combination with dynamical downscaling is introduced to derive storm related gust speeds on a high-resolution grid over Europe. Multiple linear regression models are trained using reanalysis data and wind gusts from regional climate model simulations for a sample of 100 top ranking windstorm events. The method is computationally inexpensive and reproduces individual windstorm footprints adequately. Compared to observations, the results for Germany are at least as good as pure dynamical downscaling. This new tool can be easily applied to large ensembles of general circulation model simulations and thus contribute to a better understanding of the regional impact of windstorms based on decadal and climate change projections.
Resumo:
The impact of projected climate change on wine production was analysed for the Demarcated Region of Douro, Portugal. A statistical grapevine yield model (GYM) was developed using climate parameters as predictors. Statistically significant correlations were identified between annual yield and monthly mean temperatures and monthly precipitation totals during the growing cycle. These atmospheric factors control grapevine yield in the region, with the GYM explaining 50.4% of the total variance in the yield time series in recent decades. Anomalously high March rainfall (during budburst, shoot and inflorescence development) favours yield, as well as anomalously high temperatures and low precipitation amounts in May and June (May: flowering and June: berry development). The GYM was applied to a regional climate model output, which was shown to realistically reproduce the GYM predictors. Finally, using ensemble simulations under the A1B emission scenario, projections for GYM-derived yield in the Douro Region, and for the whole of the twenty-first century, were analysed. A slight upward trend in yield is projected to occur until about 2050, followed by a steep and continuous increase until the end of the twenty-first century, when yield is projected to be about 800 kg/ha above current values. While this estimate is based on meteorological parameters alone, changes due to elevated CO2 may further enhance this effect. In spite of the associated uncertainties, it can be stated that projected climate change may significantly benefit wine yield in the Douro Valley.
Resumo:
A range of possible changes in the frequency and characteristics of European wind storms under future climate conditions was investigated on the basis of a multi-model ensemble of 9 coupled global climate model (GCM) simulations for the 20th and 21st centuries following the IPCC SRES A1B scenario. A multi-model approach allowed an estimation of the (un)certainties of the climate change signals. General changes in large-scale atmospheric flow were analysed, the occurrence of wind storms was quantified, and atmospheric features associated with wind storm events were considered. Identified storm days were investigated according to atmospheric circulation, associated pressure patterns, cyclone tracks and wind speed patterns. Validation against reanalysis data revealed that the GCMs are in general capable of realistically reproducing characteristics of European circulation weather types (CWTs) and wind storms. Results are given with respect to frequency of occurrence, storm-associated flow conditions, cyclone tracks and specific wind speed patterns. Under anthropogenic climate change conditions (SRES A1B scenario), increased frequency of westerly flow during winter is detected over the central European investigation area. In the ensemble mean, the number of detected wind storm days increases between 19 and 33% for 2 different measures of storminess, only 1 GCM revealed less storm days. The increased number of storm days detected in most models is disproportionately high compared to the related CWT changes. The mean intensity of cyclones associated with storm days in the ensemble mean increases by about 10 (±10)% in the Eastern Atlantic, near the British Isles and in the North Sea. Accordingly, wind speeds associated with storm events increase significantly by about 5 (±5)% over large parts of central Europe, mainly on days with westerly flow. The basic conclusions of this work remain valid if different ensemble contructions are considered, leaving out an outlier model or including multiple runs of one particular model.
Resumo:
Quantitative estimates of temperature and precipitation change during the late Pleistocene and Holocene have been difficult to obtain for much of the lowland Neotropics. Using two published lacustrine pollen records and a climate-vegetation model based on the modern abundance distributions of 154 Neotropical plant families, we demonstrate how family-level counts of fossil pollen can be used to quantitatively reconstruct tropical paleoclimate and provide needed information on historic patterns of climatic change. With this family-level analysis, we show that one area of the lowland tropics, northeastern Bolivia, experienced cooling (1–3 °C) and drying (400 mm/yr), relative to present, during the late Pleistocene (50,000–12,000 calendar years before present [cal. yr B.P.]). Immediately prior to the Last Glacial Maximum (LGM, ca. 21,000 cal. yr B.P.), we observe a distinct transition from cooler temperatures and variable precipitation to a period of warmer temperatures and relative dryness that extends to the middle Holocene (5000–3000 cal. yr B.P.). This prolonged reduction in precipitation occurs against the backdrop of increasing atmospheric CO2 concentrations, indicating that the presence of mixed savanna and dry-forest communities in northeastern Bolivia durng the LGM was not solely the result of low CO2 levels, as suggested previously, but also lower precipitation. The results of our analysis demonstrate the potential for using the distribution and abundance structure of modern Neotropical plant families to infer paleoclimate from the fossil pollen record.
Resumo:
We present a highly accurate tool for the simulation of shear Alfven waves (SAW) in collisionless plasma. SAW are important in space plasma environments because for small perpendicular scale lengths they can support an electric field parallel to the ambient magnetic field. Electrons can be accelerated by the parallel electric field and these waves have been implicated as the source of vibrant auroral displays. However, the parallel electric field carried by SAW is small in comparison to the perpendicular electric field of the wave, making it difficult to measure directly in the laboratory, or by satellites in the near-Earth plasma environment. In this paper, we present a simulation code that provides a means to study in detail the SAW-particle interaction in both space and laboratory plasma. Using idealised, small-amplitude propagating waves with a single perpendicular wavenumber, the simulation code accurately reproduces the damping rates and parallel electric field amplitudes predicted by linear theory for varying temperatures and perpendicular scale lengths. We present a rigorous kinetic derivation of the parallel electric field strength for small-amplitude SAW and show that commonly-used inertial and kinetic approximations are valid except for where the ratio of thermal to Alfv\'{e}n speed is between 0.7 and 1.0. We also present nonlinear simulations of large-amplitude waves and show that in cases of strong damping, the damping rates and parallel electric field strength deviate from linear predictions when wave energies are greater than only a few percent of the plasma kinetic energy, a situation which is often observed in the magnetosphere. The drift-kinetic code provides reliable, testable predictions of the parallel electric field strength which can be investigated directly in the laboratory, and will help to bridge the gap between studies of SAW in man-made and naturally occuring plasma.
Resumo:
An initial validation of the Along Track Scanning Radiometer (ATSR) Reprocessing for Climate (ARC) retrievals of sea surface temperature (SST) is presented. ATSR-2 and Advanced ATSR (AATSR) SST estimates are compared to drifting buoy and moored buoy observations over the period 1995 to 2008. The primary ATSR estimates are of skin SST, whereas buoys measure SST below the surface. Adjustment is therefore made for the skin effect, for diurnal stratification and for differences in buoy–satellite observation time. With such adjustments, satellite-in situ differences are consistent between day and night within ~ 0.01 K. Satellite-in situ differences are correlated with differences in observation time, because of the diurnal warming and cooling of the ocean. The data are used to verify the average behaviour of physical and empirical models of the warming/cooling rates. Systematic differences between adjusted AATSR and in-situ SSTs against latitude, total column water vapour (TCWV), and wind speed are less than 0.1 K, for all except the most extreme cases (TCWV < 5 kg m–2, TCWV > 60 kg m–2). For all types of retrieval except the nadir-only two-channel (N2), regional biases are less than 0.1 K for 80% of the ocean. Global comparison against drifting buoys shows night time dual-view two-channel (D2) SSTs are warm by 0.06 ± 0.23 K and dual-view three-channel (D3) SSTs are warm by 0.06 ± 0.21 K (day-time D2: 0.07 ± 0.23 K). Nadir-only results are N2: 0.03 ± 0.33 K and N3: 0.03 ± 0.19 K showing the improved inter-algorithm consistency to ~ 0.02 K. This represents a marked improvement from the existing operational retrieval algorithms for which inter-algorithm inconsistency is > 0.5 K. Comparison against tropical moored buoys, which are more accurate than drifting buoys, gives lower error estimates (N3: 0.02 ± 0.13 K, D2: 0.03 ± 0.18 K). Comparable results are obtained for ATSR-2, except that the ATSR-2 SSTs are around 0.1 K warm compared to AATSR
Resumo:
Cities and global climate change are closely linked: cities are where the bulk of greenhouse gas emissions take place through the consumption of fossil fuels; they are where an increasing proportion of the world’s people live; and they also generate their own climate – commonly characterized by the urban heat island. In this way, understanding the way cities affect the cycling of energy, water, and carbon to create an urban climate is a key element of climate mitigation and adaptation strategies, especially in the context of rising global temperatures and deteriorating air quality in many cities. As climate models resolve finer spatial-scales, they will need to represent those areas in which more than 50% of the world’s population already live to provide climate projections that are of greater use to planning and decision-making. Finally, many of the processes that are instrumental in determining urban climate are the same factors leading to global anthropogenic climate change, namely regional-scale land-use changes; increased energy use; and increased emissions of climatically-relevant atmospheric constituents. Cities are therefore both a case study for understanding, and an agent in mitigating, anthropogenic climate change. This chapter reviews and summarizes the current state of understanding of the physical basis of urban climates, as well as our ability to represent these in models. We argue that addressing the challenges of managing urban environments in a changing climate requires understanding the energy, water, and carbon balances for an urban landscape and, importantly, their interactions and feedbacks, together with their links to human behaviour and controls. We conclude with some suggestions for where further research is needed.
Resumo:
The Water and Global Change (WATCH) project evaluation of the terrestrial water cycle involves using land surface models and general hydrological models to assess hydrologically important variables including evaporation, soil moisture, and runoff. Such models require meteorological forcing data, and this paper describes the creation of the WATCH Forcing Data for 1958–2001 based on the 40-yr ECMWF Re-Analysis (ERA-40) and for 1901–57 based on reordered reanalysis data. It also discusses and analyses modelindependent estimates of reference crop evaporation. Global average annual cumulative reference crop evaporation was selected as a widely adopted measure of potential evapotranspiration. It exhibits no significant trend from 1979 to 2001 although there are significant long-term increases in global average vapor pressure deficit and concurrent significant decreases in global average net radiation and wind speed. The near-constant global average of annual reference crop evaporation in the late twentieth century masks significant decreases in some regions (e.g., the Murray–Darling basin) with significant increases in others.
Resumo:
Context: Anthropogenic activity has increased the level of atmospheric CO2, which is driving an increase of global temperatures and associated changes in precipitation patterns. At Northern latitudes, one of the likely consequences of global warming is increased precipitation and air humidity. Aims: In this work, the effects of both elevated atmospheric CO2 and increased air humidity on trees commonly growing in northern European forests were assessed. Methods: The work was carried out under field conditions by using Free Air Carbon dioxide Enrichment (FACE) and Free Air Humidity Manipulation (FAHM) systems. Leaf litter fall was measured over 4 years (FACE) or 5 years (FAHM) to determine the effects of FACE and FAHM on leaf phenology. Results: Increasing air humidity delayed leaf litter fall in Betula pendula, but not in Populus tremula × tremuloides. Similarly, under elevated atmospheric CO2, leaf litter fall was delayed in Betula pendula, but not in Alnus glutinosa. Increased CO2 appeared to interact with periods of low precipitation in summer and high ozone levels during these periods to effect leaf fall. Conclusions: This work shows that increased CO2 and humidity delay leaf fall, but this effect is species specific.