71 resultados para Sulphur
Resumo:
It is necessary to minimize the environmental impact and utilize natural resources in a sustainable and efficient manner in the early design stage of developing an environmentally-conscious design for a heating, ventilating and air-conditioning system. Energy supply options play a significant role in the total environmental load of heating, ventilating and air-conditioning systems. To assess the environmental impact of different energy options, a new method based on Emergy Analysis is proposed. Emergy Accounting, was first developed and widely used in the area of ecological engineering, but this is the first time it has been used in building service engineering. The environmental impacts due to the energy options are divided into four categories under the Emergy Framework: the depletion of natural resources, the greenhouse effect (carbon dioxide equivalents), the chemical rain effect (sulphur dioxide equivalents), and anthropogenic heat release. The depletion of non-renewable natural resources is indicated by the Environmental Load Ratio, and the environmental carrying capacity is developed to represent the environmental service to dilute the pollutants and anthropogenic heat released. This Emergy evaluation method provides a new way to integrate different environmental impacts under the same framework and thus facilitates better system choices. A case study of six different kinds of energy options consisting of renewable and non-renewable energy was performed by using Emergy Theory, and thus their relative environmental impacts were compared. The results show that the method of electricity generation in energy sources, especially for electricity-powered systems, is the most important factor to determine their overall environmental performance. The direct-fired lithium-bromide absorption type consumes more non-renewable energy, and contributes more to the urban heat island effect compared with other options having the same electricity supply. Using Emergy Analysis, designers and clients can make better-informed, environmentally-conscious selections of heating, ventilating and air-conditioning systems.
Resumo:
Mounting evidence exists that variations in sulphur content in stalagmites are closely linked to changes in volcanic or anthropogenic atmospheric sulphur. The strong dependency of sulphur on soil pH and ecosystem storage, however, can result in a delay of several years to decades in the registration of volcanic eruptions and anthropogenic emissions by stalagmites. Here we present synchrotron-radiation based trace element analysis performed on a precisely-dated section of a stalagmite from Sofular Cave in Northern Turkey. As this section covers the time interval of the intensively studied Minoan volcanic eruption between 1600 and 1650 BC, we can test whether this vigorous eruption can be traced in a stalagmite. Of all measured trace elements, only bromine shows a clear short-lived peak at 1621±251621±25 BC, whereas sulphur and molybdenum show peaks later at 1617±251617±25 and 1589±251589±25 respectively. We suggest that all trace element peaks are related to the Minoan eruption, whereas the observed phasing of bromine, molybdenum and sulphur is related to differences in their retention rates in the soil above Sofular Cave. For the first time, we can show that bromine appears to be an ideal volcanic tracer in stalagmites, as it is a prominent volatile component in volcanic eruptions, can be easily leached in soils and rapidly transferred from the atmosphere through the soil and bedrock into the cave and stalagmite respectively. Highly resolved oxygen and carbon isotope profiles indicate that the Minoan eruption had no detectable climatic and environmental impact in Northern Turkey.
Resumo:
Policies to control air quality focus on mitigating emissions of aerosols and their precursors, and other short-lived climate pollutants (SLCPs). On a local scale, these policies will have beneficial impacts on health and crop yields, by reducing particulate matter (PM) and surface ozone concentrations; however, the climate impacts of reducing emissions of SLCPs are less straightforward to predict. In this paper we consider a set of idealised, extreme mitigation strategies, in which the total anthropogenic emissions of individual SLCP emissions species are removed. This provides an upper bound on the potential climate impacts of such air quality strategies. We focus on evaluating the climate responses to changes in anthropogenic emissions of aerosol precursor species: black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2). We perform climate integrations with four fully coupled atmosphere-ocean global climate models (AOGCMs), and examine the effects on global and regional climate of removing the total land-based anthropogenic emissions of each of the three aerosol precursor species. We find that the SO2 emissions reductions lead to the strongest response, with all three models showing an increase in surface temperature focussed in the northern hemisphere high latitudes, and a corresponding increase in global mean precipitation and run-off. Changes in precipitation and run-off patterns are driven mostly by a northward shift in the ITCZ, consistent with the hemispherically asymmetric warming pattern driven by the emissions changes. The BC and OC emissions reductions give a much weaker forcing signal, and there is some disagreement between models in the sign of the climate responses to these perturbations. These differences between models are due largely to natural variability in sea-ice extent, circulation patterns and cloud changes. This large natural variability component to the signal when the ocean circulation and sea-ice are free-running means that the BC and OC mitigation measures do not necessarily lead to a discernible climate response.
Resumo:
Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land use change, land management, and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges, and highlight actions and policies to minimise adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development.
Resumo:
Lowland heath is an internationally important habitat type that has greatly declined in abundance throughout Western Europe. In recent years this has led to a growing interest in the restoration of heathland on agricultural land. This generally requires the use of chemical treatments to return soil chemical conditions to those appropriate for the support of heathland ecosystems. However, the potential for negative impacts on the environment due to the potential of these treatments to increase the availability of trace metals via raised soil acidity requires investigation. A large-scale field study investigated the effect of two chemical treatments used in heathland restoration, elemental sulphur and ferrous sulphate, on soil acidity and whether it is possible to predict the effect of the treatments on availability of two potentially toxic cations (Al and Cd) in the soil along with their subsequent accumulation in the shoots of the grass Agrostis capillaris. Results showed that both treatments decreased soil pH, but that only elemental sulphur produced a pH similar to heathland soil. The availability of Al, measured by extraction with 1 M ammonium nitrate, could not be predicted by soil pH, depth in the soil and total Al concentration in the soil. By contrast, availability of Cd could be predicted from these three variables. Concentrations of both Al and Cd in the shoots of A. capillaris showed no significant relationship with the extractable concentration in the soil. Results are discussed in light of the possible environmental impacts of the chemical restoration techniques.
Resumo:
Long-term monitoring of surface water quality has shown increasing concentrations of Dissolved Organic Carbon (DOC) across a large part of the Northern Hemisphere. Several drivers have been implicated including climate change, land management change, nitrogen and sulphur deposition and CO2 enrichment. Analysis of stream water data, supported by evidence from laboratory studies, indicates that an effect of declining sulphur deposition on catchment soil chemistry is likely to be the primary mechanism, but there are relatively few long term soil water chemistry records in the UK with which to investigate this, and other, hypotheses directly. In this paper, we assess temporal relationships between soil solution chemistry and parameters that have been argued to regulate DOC production and, using a unique set of co-located measurements of weather and bulk deposition and soil solution chemistry provided by the UK Environmental Change Network and the Intensive Forest Monitoring Level II Network . We used statistical non-linear trend analysis to investigate these relationships at 5 forested and 4 non-forested sites from 1993 to 2011. Most trends in soil solution DOC concentration were found to be non-linear. Significant increases in DOC occurred mostly prior to 2005. The magnitude and sign of the trends was associated qualitatively with changes in acid deposition, the presence/absence of a forest canopy, soil depth and soil properties. The strongest increases in DOC were seen in acidic forest soils and were most clearly linked to declining anthropogenic acid deposition, while DOC trends at some sites with westerly locations appeared to have been influenced by shorter-term hydrological variation. The results indicate that widespread DOC increases in surface waters observed elsewhere, are most likely dominated by enhanced mobilization of DOC in surficial organic horizons, rather than changes in the soil water chemistry of deeper horizons. While trends in DOC concentrations in surface horizons have flattened out in recent years, further increases may be expected as soil chemistry continues to adjust to declining inputs of acidity.
Resumo:
Since 2004, the satellite-borne Ozone Mapping Instrument (OMI) has observed sulphur dioxide (SO2) plumes during both quiescence and effusive eruptive activity at Soufrière Hills Volcano, Montserrat. On average, OMI detected a SO2 plume 4-6 times more frequently during effusive periods than during quiescence in the 2008-2010 period. The increased ability of OMI to detect SO2 during eruptive periods is mainly due to an increase in plume altitude rather than a higher SO2 emission rate. Three styles of eruptive activity cause thermal lofting of gases (Vulcanian explosions; pyroclastic flows; a hot lava dome) and the resultant plume altitudes are estimated from observations and models. Most lofting plumes from Soufrière Hills are derived from hot domes and pyroclastic flows. Although Vulcanian explosions produced the largest plumes, some produced only negligible SO2 signals detected by OMI. OMI is most valuable for monitoring purposes at this volcano during periods of lava dome growth and during explosive activity.
Resumo:
European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter(PM2.5) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 80 000 (37 000–116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US$232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr−1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality and human health over Europe, as well as having an unintended impact on the regional radiative balance and climate.
Resumo:
Several biotic crises during the past 300 million years have been linked to episodes of continental flood basalt volcanism, and in particular to the release of massive quantities of magmatic sulphur gas species. Flood basalt provinces were typically formed by numerous individual eruptions, each lasting years to decades. However, the environmental impact of these eruptions may have been limited by the occurrence of quiescent periods that lasted hundreds to thousands of years. Here we use a global aerosol model to quantify the sulphur-induced environmental effects of individual, decade-long flood basalt eruptions representative of the Columbia River Basalt Group, 16.5–14.5 million years ago, and the Deccan Traps, 65 million years ago. For a decade-long eruption of Deccan scale, we calculate a decadal-mean reduction in global surface temperature of 4.5 K, which would recover within 50 years after an eruption ceased unless climate feedbacks were very different in deep-time climates. Acid mists and fogs could have caused immediate damage to vegetation in some regions, but acid-sensitive land and marine ecosystems were well-buffered against volcanic sulphur deposition effects even during century-long eruptions. We conclude that magmatic sulphur from flood basalt eruptions would have caused a biotic crisis only if eruption frequencies and lava discharge rates had been high and sustained for several centuries at a time.
Resumo:
The effects of simulated additional rain (ear wetting, 25 mm) or of rain shelter imposed at different periods after anthesis on grain quality at maturity and the dynamics of grain filling and desiccation were investigated in UK field-grown crops of wheat (Triticum aestivum L., cvar Tybalt) in 2011 and in 2012 when June–August rainfall was 255.0 and 214.6 mm, respectively, and above the decadal mean (157.4 mm). Grain filling and desiccation were quantified well by broken-stick regressions and Gompertz curves, respectively. Rain shelter for 56 (2011) or 70 d (2012) after anthesis, and to a lesser extent during late maturation only, resulted in more rapid desiccation and hence progress to harvest maturity whereas ear wetting had negligible effects, even when applied four times. Grain-filling duration was also affected as above in 2011, but with no significant effect in 2012. In both years, there were strong positive associations between final grain dry weight and duration of filling. The treatments affected all grain quality traits in 2011: nitrogen (N) and sulphur (S) concentrations, N:S ratio, sodium dodecyl sulphate (SDS) sedimentation volume, Hagberg Falling Number (HFN), and the incidence of blackpoint. Only N concentration and blackpoint were affected significantly by treatments in 2012. Rain shelter throughout grain filling reduced N concentration, whereas rain shelter reduced the incidence of blackpoint and ear wetting increased it. In 2011, rain shelter throughout reduced S concentration, increased N:S ratio and reduced SDS. Treatment effects on HFN were not consistent within or between years. Nevertheless, a comparison between the extreme treatment means in 2012 indicated damage from late rain combined with ear wetting resulted in a reduction of c. 0.7 s in HFN/mm August rainfall, whilst that between samples taken immediately after ear wetting at harvest maturity or 7 d later suggested recovery from damage to HFN upon re-drying in planta. Hence, the incidence of blackpoint was the only grain quality trait affected consistently by the diverse treatments. The remaining aspects of grain quality were comparatively resilient to rain incident upon developing and maturing ears of cvar Tybalt. No consistent temporal patterns of sensitivity to shelter or ear wetting were detected for any aspect of grain quality.
Resumo:
Ruminant husbandry is a major source of anthropogenic greenhouse gases (GHG). Filling knowledge gaps and providing expert recommendation are important for defining future research priorities, improving methodologies and establishing science-based GHG mitigation solutions to government and non-governmental organisations, advisory/extension networks, and the ruminant livestock sector. The objectives of this review is to summarize published literature to provide a detailed assessment of the methodologies currently in use for measuring enteric methane (CH4) emission from individual animals under specific conditions, and give recommendations regarding their application. The methods described include respiration chambers and enclosures, sulphur hexafluoride tracer (SF6) technique, and techniques based on short-term measurements of gas concentrations in samples of exhaled air. This includes automated head chambers (e.g. the GreenFeed system), the use of carbon dioxide (CO2) as a marker, and (handheld) laser CH4 detection. Each of the techniques are compared and assessed on their capability and limitations, followed by methodology recommendations. It is concluded that there is no ‘one size fits all’ method for measuring CH4 emission by individual animals. Ultimately, the decision as to which method to use should be based on the experimental objectives and resources available. However, the need for high throughput methodology e.g. for screening large numbers of animals for genomic studies, does not justify the use of methods that are inaccurate. All CH4 measurement techniques are subject to experimental variation and random errors. Many sources of variation must be considered when measuring CH4 concentration in exhaled air samples without a quantitative or at least regular collection rate, or use of a marker to indicate (or adjust) for the proportion of exhaled CH4 sampled. Consideration of the number and timing of measurements relative to diurnal patterns of CH4 emission and respiratory exchange are important, as well as consideration of feeding patterns and associated patterns of rumen fermentation rate and other aspects of animal behaviour. Regardless of the method chosen, appropriate calibrations and recovery tests are required for both method establishment and routine operation. Successful and correct use of methods requires careful attention to detail, rigour, and routine self-assessment of the quality of the data they provide.