63 resultados para Subspace Filter Diagonalization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ring-shedding process in the Agulhas Current is studied using the ensemble Kalman filter to assimilate geosat altimeter data into a two-layer quasigeostrophic ocean model. The properties of the ensemble Kalman filter are further explored with focus on the analysis scheme and the use of gridded data. The Geosat data consist of 10 fields of gridded sea-surface height anomalies separated 10 days apart that are added to a climatic mean field. This corresponds to a huge number of data values, and a data reduction scheme must be applied to increase the efficiency of the analysis procedure. Further, it is illustrated how one can resolve the rank problem occurring when a too large dataset or a small ensemble is used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Filter degeneracy is the main obstacle for the implementation of particle filter in non-linear high-dimensional models. A new scheme, the implicit equal-weights particle filter (IEWPF), is introduced. In this scheme samples are drawn implicitly from proposal densities with a different covariance for each particle, such that all particle weights are equal by construction. We test and explore the properties of the new scheme using a 1,000-dimensional simple linear model, and the 1,000-dimensional non-linear Lorenz96 model, and compare the performance of the scheme to a Local Ensemble Kalman Filter. The experiments show that the new scheme can easily be implemented in high-dimensional systems and is never degenerate, with good convergence properties in both systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the same linear subspace. In the majority of the existing work on subspace clustering, clusters are built based on feature information, while sample correlations in their original spatial structure are simply ignored. Besides, original high-dimensional feature vector contains noisy/redundant information, and the time complexity grows exponentially with the number of dimensions. To address these issues, we propose a tensor low-rank representation (TLRR) and sparse coding-based (TLRRSC) subspace clustering method by simultaneously considering feature information and spatial structures. TLRR seeks the lowest rank representation over original spatial structures along all spatial directions. Sparse coding learns a dictionary along feature spaces, so that each sample can be represented by a few atoms of the learned dictionary. The affinity matrix used for spectral clustering is built from the joint similarities in both spatial and feature spaces. TLRRSC can well capture the global structure and inherent feature information of data, and provide a robust subspace segmentation from corrupted data. Experimental results on both synthetic and real-world data sets show that TLRRSC outperforms several established state-of-the-art methods.