88 resultados para Stochastic inflation
Resumo:
A direct method is presented for determining the uncertainty in reservoir pressure, flow, and net present value (NPV) using the time-dependent, one phase, two- or three-dimensional equations of flow through a porous medium. The uncertainty in the solution is modelled as a probability distribution function and is computed from given statistical data for input parameters such as permeability. The method generates an expansion for the mean of the pressure about a deterministic solution to the system equations using a perturbation to the mean of the input parameters. Hierarchical equations that define approximations to the mean solution at each point and to the field covariance of the pressure are developed and solved numerically. The procedure is then used to find the statistics of the flow and the risked value of the field, defined by the NPV, for a given development scenario. This method involves only one (albeit complicated) solution of the equations and contrasts with the more usual Monte-Carlo approach where many such solutions are required. The procedure is applied easily to other physical systems modelled by linear or nonlinear partial differential equations with uncertain data.
Resumo:
Ensemble clustering (EC) can arise in data assimilation with ensemble square root filters (EnSRFs) using non-linear models: an M-member ensemble splits into a single outlier and a cluster of M−1 members. The stochastic Ensemble Kalman Filter does not present this problem. Modifications to the EnSRFs by a periodic resampling of the ensemble through random rotations have been proposed to address it. We introduce a metric to quantify the presence of EC and present evidence to dispel the notion that EC leads to filter failure. Starting from a univariate model, we show that EC is not a permanent but transient phenomenon; it occurs intermittently in non-linear models. We perform a series of data assimilation experiments using a standard EnSRF and a modified EnSRF by a resampling though random rotations. The modified EnSRF thus alleviates issues associated with EC at the cost of traceability of individual ensemble trajectories and cannot use some of algorithms that enhance performance of standard EnSRF. In the non-linear regimes of low-dimensional models, the analysis root mean square error of the standard EnSRF slowly grows with ensemble size if the size is larger than the dimension of the model state. However, we do not observe this problem in a more complex model that uses an ensemble size much smaller than the dimension of the model state, along with inflation and localisation. Overall, we find that transient EC does not handicap the performance of the standard EnSRF.
Resumo:
We discuss the time evolution of the wave function which is the solution of a stochastic Schrödinger equation describing the dynamics of a free quantum particle subject to spontaneous localizations in space. We prove global existence and uniqueness of solutions. We observe that there exist three time regimes: the collapse regime, the classical regime and the diffusive regime. Concerning the latter, we assert that the general solution converges almost surely to a diffusing Gaussian wave function having a finite spread both in position as well as in momentum. This paper corrects and completes earlier works on this issue.
Resumo:
We consider the relation between so called continuous localization models—i.e. non-linear stochastic Schrödinger evolutions—and the discrete GRW-model of wave function collapse. The former can be understood as scaling limit of the GRW process. The proof relies on a stochastic Trotter formula, which is of interest in its own right. Our Trotter formula also allows to complement results on existence theory of stochastic Schrödinger evolutions by Holevo and Mora/Rebolledo.
Resumo:
The relationship between price volatility and competition is examined. Atheoretic, vector auto regressions on farm prices of wheat and retail prices of derivatives (flour, bread, pasta, bulgur and cookies) are compared to results from a dynamic, simultaneous-equations model with theory-based farm-to-retail linkages. Analytical results yield insights about numbers of firms and their impacts on demand- and supply-side multipliers, but the applications to Turkish time series (1988:1-1996:12) yield mixed results.
First order k-th moment finite element analysis of nonlinear operator equations with stochastic data
Resumo:
We develop and analyze a class of efficient Galerkin approximation methods for uncertainty quantification of nonlinear operator equations. The algorithms are based on sparse Galerkin discretizations of tensorized linearizations at nominal parameters. Specifically, we consider abstract, nonlinear, parametric operator equations J(\alpha ,u)=0 for random input \alpha (\omega ) with almost sure realizations in a neighborhood of a nominal input parameter \alpha _0. Under some structural assumptions on the parameter dependence, we prove existence and uniqueness of a random solution, u(\omega ) = S(\alpha (\omega )). We derive a multilinear, tensorized operator equation for the deterministic computation of k-th order statistical moments of the random solution's fluctuations u(\omega ) - S(\alpha _0). We introduce and analyse sparse tensor Galerkin discretization schemes for the efficient, deterministic computation of the k-th statistical moment equation. We prove a shift theorem for the k-point correlation equation in anisotropic smoothness scales and deduce that sparse tensor Galerkin discretizations of this equation converge in accuracy vs. complexity which equals, up to logarithmic terms, that of the Galerkin discretization of a single instance of the mean field problem. We illustrate the abstract theory for nonstationary diffusion problems in random domains.
Resumo:
Real-time estimates of output gaps and inflation gaps differ from the values that are obtained using data available long after the event. Part of the problem is that the data on which the real-time estimates are based is subsequently revised. We show that vector-autoregressive models of data vintages provide forecasts of post-revision values of future observations and of already-released observations capable of improving estimates of output and inflation gaps in real time. Our findings indicate that annual revisions to output and inflation data are in part predictable based on their past vintages.
Resumo:
The recent roll-out of smart metering technologies in several developed countries has intensified research on the impacts of Time-of-Use (TOU) pricing on consumption. This paper analyses a TOU dataset from the Province of Trento in Northern Italy using a stochastic adjustment model. Findings highlight the non-steadiness of the relationship between consumption and TOU price. Weather and active occupancy can partly explain future consumption in relation to price.
Resumo:
In this article, we illustrate experimentally an important consequence of the stochastic component in choice behaviour which has not been acknowledged so far. Namely, its potential to produce ‘regression to the mean’ (RTM) effects. We employ a novel approach to individual choice under risk, based on repeated multiple-lottery choices (i.e. choices among many lotteries), to show how the high degree of stochastic variability present in individual decisions can distort crucially certain results through RTM effects. We demonstrate the point in the context of a social comparison experiment.
Resumo:
Recent studies have indicated that research practices in psychology may be susceptible to factors that increase false-positive rates, raising concerns about the possible prevalence of false-positive findings. The present article discusses several practices that may run counter to the inflation of false-positive rates. Taking these practices into account would lead to a more balanced view on the false-positive issue. Specifically, we argue that an inflation of false-positive rates would diminish, sometimes to a substantial degree, when researchers (a) have explicit a priori theoretical hypotheses, (b) include multiple replication studies in a single paper, and (c) collect additional data based on observed results. We report findings from simulation studies and statistical evidence that support these arguments. Being aware of these preventive factors allows researchers not to overestimate the pervasiveness of false-positives in psychology and to gauge the susceptibility of a paper to possible false-positives in practical and fair ways.
Resumo:
We consider evaluating the UK Monetary Policy Committee's inflation density forecasts using probability integral transform goodness-of-fit tests. These tests evaluate the whole forecast density. We also consider whether the probabilities assigned to inflation being in certain ranges are well calibrated, where the ranges are chosen to be those of particular relevance to the MPC, given its remit of maintaining inflation rates in a band around per annum. Finally, we discuss the decision-based approach to forecast evaluation in relation to the MPC forecasts
Resumo:
Techniques are proposed for evaluating forecast probabilities of events. The tools are especially useful when, as in the case of the Survey of Professional Forecasters (SPF) expected probability distributions of inflation, recourse cannot be made to the method of construction in the evaluation of the forecasts. The tests of efficiency and conditional efficiency are applied to the forecast probabilities of events of interest derived from the SPF distributions, and supplement a whole-density evaluation of the SPF distributions based on the probability integral transform approach.