63 resultados para Stability of airplanes, Longitudinal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intrinsically chiral metal surfaces provide enantiospecific reaction environments without the need of coadsorbed modifiers. Amongst the intrinsically chiral copper surfaces, Cu{531} has the smallest unit cell and the highest density of chiral sites. XPS, NEXAFS and TPD were employed to investigate the adsorption and decomposition behaviour of the two chiral enantiomers of tartaric acid on this surface. The results obtained from XPS and NEXAFS show that at saturation coverage both enantiomers of tartaric acid adsorb in a μ4 configuration through the two carboxylic groups,which are rotatedwith respect to each other by 90°±≈15°within the surface plane. At intermediate coverage the R,R enantiomer adopts a similar configuration, but the S,S enantiomer is different and shows a high degree of dissociation. Growth of multilayers is observed at high exposures when the sample is kept at below 370 K. TPD experiments show that multilayers desorb between 390 K and 470 K and decomposition of the chemisorbed layer occurs between 470 K and 600 K. The desorption spectra support a two-step decomposition mechanism with a O_C_C_O or HO–HC_CH–OH intermediate that leads to production of CO2 and CO. Enantiomeric differences are observed in the desorption features related to the decomposition of the chemisorbed layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nickel cyanide is a layered material showing markedly anisotropic behaviour. High-pressure neutron diffraction measurements show that at pressures up to 20.1 kbar, compressibility is much higher in the direction perpendicular to the layers, c, than in the plane of the strongly chemically bonded metal-cyanide sheets. Detailed examination of the behaviour of the tetragonal lattice parameters, a and c, as a function of pressure reveal regions in which large changes in slope occur, for example, in c(P) at 1 kbar. The experimental pressure dependence of the volume data is fitted to a bulk modulus, B0, of 1050 (20) kbar over the pressure range 0–1 kbar, and to 124 (2) kbar over the range 1–20.1 kbar. Raman spectroscopy measurements yield additional information on how the structure and bonding in the Ni(CN)2 layers change with pressure and show that a phase change occurs at about 1 kbar. The new high-pressure phase, (Phase PII), has ordered cyanide groups with sheets of D4h symmetry containing Ni(CN)4 and Ni(NC)4 groups. The Raman spectrum of phase PII closely resembles that of the related layered compound, Cu1/2Ni1/2(CN)2, which has previously been shown to contain ordered C≡N groups. The phase change, PI to PII, is also observed in inelastic neutron scattering studies which show significant changes occurring in the phonon spectra as the pressure is raised from 0.3 to 1.5 kbar. These changes reflect the large reduction in the interlayer spacing which occurs as Phase PI transforms to Phase PII and the consequent increase in difficulty for out-of-plane atomic motions. Unlike other cyanide materials e.g. Zn(CN)2 and Ag3Co(CN)6, which show an amorphization and/or a decomposition at much lower pressures (~100 kbar), Ni(CN)2 can be recovered after pressurising to 200 kbar, albeit in a more ordered form.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic tripeptide based noncytotoxic hydrogelators have been discovered for releasing an anticancer drug at physiological pH and temparature. Interestingly, gel stiffness, drug release capacity and proteolytic stability of these hydrogels have been successfully modulated by incorporating D-amino acid residues, indicating their potential use for drug delivery in the future.