65 resultados para Spatio-numerical modelling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a general approach based on nonequilibrium thermodynamics for bridging the gap between a well-defined microscopic model and the macroscopic rheology of particle-stabilised interfaces. Our approach is illustrated by starting with a microscopic model of hard ellipsoids confined to a planar surface, which is intended to simply represent a particle-stabilised fluid–fluid interface. More complex microscopic models can be readily handled using the methods outlined in this paper. From the aforementioned microscopic starting point, we obtain the macroscopic, constitutive equations using a combination of systematic coarse-graining, computer experiments and Hamiltonian dynamics. Exemplary numerical solutions of the constitutive equations are given for a variety of experimentally relevant flow situations to explore the rheological behaviour of our model. In particular, we calculate the shear and dilatational moduli of the interface over a wide range of surface coverages, ranging from the dilute isotropic regime, to the concentrated nematic regime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper uses a novel numerical optimization technique - robust optimization - that is well suited to solving the asset-liability management (ALM) problem for pension schemes. It requires the estimation of fewer stochastic parameters, reduces estimation risk and adopts a prudent approach to asset allocation. This study is the first to apply it to a real-world pension scheme, and the first ALM model of a pension scheme to maximise the Sharpe ratio. We disaggregate pension liabilities into three components - active members, deferred members and pensioners, and transform the optimal asset allocation into the scheme’s projected contribution rate. The robust optimization model is extended to include liabilities and used to derive optimal investment policies for the Universities Superannuation Scheme (USS), benchmarked against the Sharpe and Tint, Bayes-Stein, and Black-Litterman models as well as the actual USS investment decisions. Over a 144 month out-of-sample period robust optimization is superior to the four benchmarks across 20 performance criteria, and has a remarkably stable asset allocation – essentially fix-mix. These conclusions are supported by six robustness checks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous versions of the Consortium for Small-scale Modelling (COSMO) numerical weather prediction model have used a constant sea-ice surface temperature, but observations show a high degree of variability on sub-daily timescales. To account for this, we have implemented a thermodynamic sea-ice module in COSMO and performed simulations at a resolution of 15 km and 5 km for the Laptev Sea area in April 2008. Temporal and spatial variability of surface and 2-m air temperature are verified by four automatic weather stations deployed along the edge of the western New Siberian polynya during the Transdrift XIII-2 expedition and by surface temperature charts derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. A remarkable agreement between the new model results and these observations demonstrates that the implemented sea-ice module can be applied for short-range simulations. Prescribing the polynya areas daily, our COSMO simulations provide a high-resolution and high-quality atmospheric data set for the Laptev Sea for the period 14-30 April 2008. Based on this data set, we derive a mean total sea-ice production rate of 0.53 km3/day for all Laptev Sea polynyas under the assumption that the polynyas are ice-free and a rate of 0.30 km3/day if a 10-cm-thin ice layer is assumed. Our results indicate that ice production in Laptev Sea polynyas has been overestimated in previous studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simple first-order closure remains an attractive way of formulating equations for complex canopy flows when the aim is to find analytic or simple numerical solutions to illustrate fundamental physical processes. Nevertheless, the limitations of such closures must be understood if the resulting models are to illuminate rather than mislead. We propose five conditions that first-order closures must satisfy then test two widely used closures against them. The first is the eddy diffusivity based on a mixing length. We discuss the origins of this approach, its use in simple canopy flows and extensions to more complex flows. We find that it satisfies most of the conditions and, because the reasons for its failures are well understood, it is a reliable methodology. The second is the velocity-squared closure that relates shear stress to the square of mean velocity. Again we discuss the origins of this closure and show that it is based on incorrect physical principles and fails to satisfy any of the five conditions in complex canopy flows; consequently its use can lead to actively misleading conclusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of the Palaeoclimate Modelling Intercomparison Project (PMIP) is to understand the response of the climate system to changes in different climate forcings and to feedbacks. Through comparison with observations of the environmental impacts of these climate changes, or with climate reconstructions based on physical, chemical or biological records, PMIP also addresses the issue of how well state-of-the-art models simulate climate changes. Palaeoclimate states are radically different from those of the recent past documented by the instrumental record and thus provide an out-of-sample test of the models used for future climate projections and a way to assess whether they have the correct sensitivity to forcings and feedbacks. Five distinctly different periods have been selected as focus for the core palaeoclimate experiments that are designed to contribute to the objectives of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). This manuscript describes the motivation for the choice of these periods and the design of the numerical experiments, with a focus upon their novel features compared to the experiments performed in previous phases of PMIP and CMIP as well as the benefits of common analyses of the models across multiple climate states. It also describes the information needed to document each experiment and the model outputs required for analysis and benchmarking.