109 resultados para Sparse sensing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote sensing is the only practicable means to observe snow at large scales. Measurements from passive microwave instruments have been used to derive snow climatology since the late 1970’s, but the algorithms used were limited by the computational power of the era. Simplifications such as the assumption of constant snow properties enabled snow mass to be retrieved from the microwave measurements, but large errors arise from those assumptions, which are still used today. A better approach is to perform retrievals within a data assimilation framework, where a physically-based model of the snow properties can be used to produce the best estimate of the snow cover, in conjunction with multi-sensor observations such as the grain size, surface temperature, and microwave radiation. We have developed an existing snow model, SNOBAL, to incorporate mass and energy transfer of the soil, and to simulate the growth of the snow grains. An evaluation of this model is presented and techniques for the development of new retrieval systems are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new sparse kernel probability density function (pdf) estimator based on zero-norm constraint is constructed using the classical Parzen window (PW) estimate as the target function. The so-called zero-norm of the parameters is used in order to achieve enhanced model sparsity, and it is suggested to minimize an approximate function of the zero-norm. It is shown that under certain condition, the kernel weights of the proposed pdf estimator based on the zero-norm approximation can be updated using the multiplicative nonnegative quadratic programming algorithm. Numerical examples are employed to demonstrate the efficacy of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new approach to modelling flash floods in dryland catchments by integrating remote sensing and digital elevation model (DEM) data in a geographical information system (GIS). The spectral reflectance of channels affected by recent flash floods exhibit a marked increase, due to the deposition of fine sediments in these channels as the flood recedes. This allows the parts of a catchment that have been affected by a recent flood event to be discriminated from unaffected parts, using a time series of Landsat images. Using images of the Wadi Hudain catchment in southern Egypt, the hillslope areas contributing flow were inferred for different flood events. The SRTM3 DEM was used to derive flow direction, flow length, active channel cross-sectional areas and slope. The Manning Equation was used to estimate the channel flow velocities, and hence the time-area zones of the catchment. A channel reach that was active during a 1985 runoff event, that does not receive any tributary flow, was used to estimate a transmission loss rate of 7·5 mm h−1, given the maximum peak discharge estimate. Runoff patterns resulting from different flood events are quite variable; however the southern part of the catchment appears to have experienced more floods during the period of study (1984–2000), perhaps because the bedrock hillslopes in this area are more effective at runoff production than other parts of the catchment which are underlain by unconsolidated Quaternary sands and gravels. Due to high transmission loss, runoff generated within the upper reaches is rarely delivered to the alluvial fan and Shalateen city situated at the catchment outlet. The synthetic GIS-based time area zones, on their own, cannot be relied on to model the hydrographs reliably; physical parameters, such as rainfall intensity, distribution, and transmission loss, must also be considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interchange reconnection at the Sun, that is, reconnection between a doubly-connected field loop and singly-connected or open field line that extends to infinity, has important implications for the heliospheric magnetic flux budget. Recent work on the topic is reviewed, with emphasis on two aspects. The first is a possible heliospheric signature of interchange reconnection at the coronal hole boundary, where open fields meet closed loops. The second aspect concerns the means by which the heliospheric magnetic field strength reached record-lows during the recent solar minimum period. A new implication of this work is that interchange reconnection may be responsible for the puzzling, occasional coincidence of the heliospheric current sheet and the interface between fast and slow flow in the solar wind.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The statistics of cloud-base vertical velocity simulated by the non-hydrostatic mesoscale model AROME are compared with Cloudnet remote sensing observations at two locations: the ARM SGP site in Central Oklahoma, and the DWD observatory at Lindenberg, Germany. The results show that, as expected, AROME significantly underestimates the variability of vertical velocity at cloud-base compared to observations at their nominal resolution; the standard deviation of vertical velocity in the model is typically 4-6 times smaller than observed, and even more during the winter at Lindenberg. Averaging the observations to the horizontal scale corresponding to the physical grid spacing of AROME (2.5 km) explains 70-80% of the underestimation by the model. Further averaging of the observations in the horizontal is required to match the model values for the standard deviation in vertical velocity. This indicates an effective horizontal resolution for the AROME model of at least 4 times the physically-defined grid spacing. The results illustrate the need for special treatment of sub-grid scale variability of vertical velocities in kilometer-scale atmospheric models, if processes such as aerosol-cloud interactions are to be included in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assessed the potential for using optical functional types as effective markers to monitor changes in vegetation in floodplain meadows associated with changes in their local environment. Floodplain meadows are challenging ecosystems for monitoring and conservation because of their highly biodiverse nature. Our aim was to understand and explain spectral differences among key members of floodplain meadows and also characterize differences with respect to functional traits. The study was conducted on a typical floodplain meadow in UK (MG4-type, mesotrophic grassland type 4, according to British National Vegetation Classification). We compared two approaches to characterize floodplain communities using field spectroscopy. The first approach was sub-community based, in which we collected spectral signatures for species groupings indicating two distinct eco-hydrological conditions (dry and wet soil indicator species). The other approach was “species-specific”, in which we focused on the spectral reflectance of three key species found on the meadow. One herb species is a typical member of the MG4 floodplain meadow community, while the other two species, sedge and rush, represent wetland vegetation. We also monitored vegetation biophysical and functional properties as well as soil nutrients and ground water levels. We found that the vegetation classes representing meadow sub-communities could not be spectrally distinguished from each other, whereas the individual herb species was found to have a distinctly different spectral signature from the sedge and rush species. The spectral differences between these three species could be explained by their observed differences in plant biophysical parameters, as corroborated through radiative transfer model simulations. These parameters, such as leaf area index, leaf dry matter content, leaf water content, and specific leaf area, along with other functional parameters, such as maximum carboxylation capacity and leaf nitrogen content, also helped explain the species’ differences in functional dynamics. Groundwater level and soil nitrogen availability, which are important factors governing plant nutrient status, were also found to be significantly different for the herb/wetland species’ locations. The study concludes that spectrally distinguishable species, typical for a highly biodiverse site such as a floodplain meadow, could potentially be used as target species to monitor vegetation dynamics under changing environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors address the problems in using a fiber-optic proximity sensor to detect robot end-effector positioning errors in performing a contact task when uncertainties about target position exist. An extended Kalman filter approach is employed to solve the nonlinear filtering problem. Some experimental results are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents novel observer-based techniques for the estimation of flow demands in gas networks, from sparse pressure telemetry. A completely observable model is explored, constructed by incorporating difference equations that assume the flow demands are steady. Since the flow demands usually vary slowly with time, this is a reasonable approximation. Two techniques for constructing robust observers are employed: robust eigenstructure assignment and singular value assignment. These techniques help to reduce the effects of the system approximation. Modelling error may be further reduced by making use of known profiles for the flow demands. The theory is extended to deal successfully with the problem of measurement bias. The pressure measurements available are subject to constant biases which degrade the flow demand estimates, and such biases need to be estimated. This is achieved by constructing a further model variation that incorporates the biases into an augmented state vector, but now includes information about the flow demand profiles in a new form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear models of bidirectional reflectance distribution are useful tools for understanding the angular variability of surface reflectance as observed by medium-resolution sensors such as the Moderate Resolution Imaging Spectrometer. These models are operationally used to normalize data to common view and illumination geometries and to calculate integral quantities such as albedo. Currently, to compensate for noise in observed reflectance, these models are inverted against data collected during some temporal window for which the model parameters are assumed to be constant. Despite this, the retrieved parameters are often noisy for regions where sufficient observations are not available. This paper demonstrates the use of Lagrangian multipliers to allow arbitrarily large windows and, at the same time, produce individual parameter sets for each day even for regions where only sparse observations are available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new sparse shape modeling framework on the Laplace-Beltrami (LB) eigenfunctions. Traditionally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes by forming a Fourier series expansion. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we propose to filter out only the significant eigenfunctions by imposing l1-penalty. The new sparse framework can further avoid additional surface-based smoothing often used in the field. The proposed approach is applied in investigating the influence of age (38-79 years) and gender on amygdala and hippocampus shapes in the normal population. In addition, we show how the emotional response is related to the anatomy of the subcortical structures.