64 resultados para Solubility.
Resumo:
BACKGROUND: Chemical chitin extraction generates large amounts of wastes and increases partial deacetylation of the product. Therefore, the use of biological methods for chitin extraction is an interesting alternative. The effects of process conditions on enzyme assisted extraction of chitin from the shrimp shells in a systematic way were the focal points of this study. RESULTS: Demineralisation conditions of 25C, 20 min, shells-lactic acid ratio of 1:1.1 w/w; and shells-acetic acid ratio of 1:1.2 w/w, the maximum demineralisation values were 98.64 and 97.57% for lactic and acetic acids, respectively. A total protein removal efficiency of 91.10% by protease from Streptomyces griseus with enzyme-substrate ratio 55 U/g, pH 7.0 and incubation time 3 h is obtained when the particle size range is 50-25 μm, which was identified as the most critical factor. The X-ray diffraction and 13C NMR spectroscopy analysis showed that the lower percent crystallinity and higher degree of acetylation of chitin from enzyme assisted extraction may exhibit better solubility properties and less depolymerisation in comparison with chitin from the chemical extraction. CONCLUSION: The present work investigates the effects of individual factors on process yields, and it has shown that, if the particle size is properly controlled a reaction time of 3 h is more than enough for deproteination by protease. Physicochemical analysis indicated that the enzyme assisted production of chitin seems appropriate to extract chitin, possibly retaining its native structure.
Resumo:
Bulk polycrystalline samples in the series Ti1−xNbxS2 (0 ≤ x ≤ 0.075) were prepared using mechanical alloying synthesis and spark plasma sintering. X-ray diffraction analysis coupled with high resolution transmission electron microscopy indicates the formation of trigonal TiS2 by high energy ball-milling. The as-synthesized particles consist of pseudo-ordered TiS2 domains of around 20–50 nm, joined by bent atomic planes. This bottom-up approach leads, after spark plasma sintering, to homogeneous solid solutions, with a niobium solubility limit of x = 0.075. Microstructural observations evidence the formation of small crystallites in the bulk compounds with a high density of stacking faults. The large grain boundary concentration coupled with the presence of planar defects, leads to a substantial decrease in the thermal conductivity to 1.8 W/mK at 700 K. This enables the figure of merit to reach ZT = 0.3 at 700 K for x = 0.05, despite the lower electron mobility in mechanically alloyed samples due to small crystallite/grain size and structural defects.
Resumo:
Polymers which can respond to externally applied stimuli have found much application in the biomedical field due to their (reversible) coil–globule transitions. Polymers displaying a lower critical solution temperature are the most commonly used, but for blood-borne (i.e., soluble) biomedical applications the application of heat is not always possible, nor practical. Here we report the design and synthesis of poly(oligoethylene glycol methacrylate)-based polymers whose cloud points are easily varied by alkaline phosphatase-mediated dephosphorylation. By fine-tuning the density of phosphate groups on the backbone, it was possible to induce an isothermal transition: A change in solubility triggered by removal of a small number of phosphate esters from the side chains activating the LCST-type response. As there was no temperature change involved, this serves as a model of a cell-instructed polymer response. Finally, it was found that both polymers were non cytotoxic against MCF-7 cells (at 1 mg·mL–1), which confirms promise for biomedical applications.
Resumo:
There is a worldwide interest in the development of processes for producing colorants from natural sources. Microorganisms provide an alternative source of natural colorants produced by cultivation technology and extracted from the fermented broth. The aim of the present work was to study the recovery of red colorants from the fermented broth of Talaromyces amestolkiae using the technique of colloidal gas aphrons (CGA) comprising surfactant-stabilized microbubbles. Preliminary experiments were performed to evaluate the red colorants’ solubility in different organic solvents, octanol/water partitioning, and their stability in surfactant solutions, namely hexadecyl trimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and polyoxyethylenesorbitan monolaurate (Tween 20), which are cationic, anionic and nonionic surfactants, respectively. The first recovery experiments were carried out using CGA generated by these surfactants at different volumetric ratios (VR, 3–18). Subsequently, two different approaches to generate CGA were investigated at VR values of 6 and 12: the first involved the use of CTAB at pH 6.9–10.0, and the second involved the use of Tween 20 using red colorants partially dissolved in ethanol and Tween 20. The characterization results showed that red colorants have a hydrophilic nature. The highest recoveries were obtained with Tween 20 (78%) and CTAB (70%). These results demonstrated that the recovery of the colorants was driven by both electrostatic and hydrophobic interactions. The VR was found to be an important operating parameter and at VR 12 with CTAB (at pH 9) maximum recovery, partitioning coefficient (K = 5.39) and selectivity in relation to protein and sugar (SP = 3.75 and SS = 7.20 respectively) were achieved. Furthermore, with Tween 20, the separation was driven mainly by hydrophobic interactions. Overall CGA show promise for the recovery of red colorants from a fermented broth. Although better results were obtained with CTAB than with Tween 20 the latter may be more suitable for some application due to its lower toxicity.