90 resultados para Sierra of Aralar (mountain range of Aralar)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The primary objective was to determine fatty acid composition of skinless chicken breast and leg meat portions and chicken burgers and nuggets from the economy price range, standard price range (both conventional intensive rearing) and the organic range from four leading supermarkets. Few significant differences in the SFA, MUFA and PUFA composition of breast and leg meat portions were found among price ranges, and supermarket had no effect. No significant differences in fatty acid concentrations of economy and standard chicken burgers were found, whereas economy chicken nuggets had higher C16:1, C18:1 cis, C18:1 trans and C18:3 n-3 concentrations than had standard ones. Overall, processed chicken products had much higher fat contents and SFA than had whole meat. Long chain n-3 fatty acids had considerably lower concentrations in processed products than in whole meat. Overall there was no evidence that organic chicken breast or leg meat had a more favourable fatty acid composition than had meat from conventionally reared birds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We use a soil carbon (C) model (RothC), driven by a range of climate models for a range of climate scenarios to examine the impacts of future climate on global soil organic carbon (SOC) stocks. The results suggest an overall global increase in SOC stocks by 2100 under all scenarios, but with a different extent of increase among the climate model and emissions scenarios. The impacts of projected land use changes are also simulated, but have relatively minor impacts at the global scale. Whether soils gain or lose SOC depends upon the balance between C inputs and decomposition. Changes in net primary production (NPP) change C inputs to the soil, whilst decomposition usually increases under warmer temperatures, but can also be slowed by decreased soil moisture. Underlying the global trend of increasing SOC under future climate is a complex pattern of regional SOC change. SOC losses are projected to occur in northern latitudes where higher SOC decomposition rates due to higher temperatures are not balanced by increased NPP, whereas in tropical regions, NPP increases override losses due to higher SOC decomposition. The spatial heterogeneity in the response of SOC to changing climate shows how delicately balanced the competing gain and loss processes are, with subtle changes in temperature, moisture, soil type and land use, interacting to determine whether SOC increases or decreases in the future. Our results suggest that we should stop looking for a single answer regarding whether SOC stocks will increase or decrease under future climate, since there is no single answer. Instead, we should focus on improving our prediction of the factors that determine the size and direction of change, and the land management practices that can be implemented to protect and enhance SOC stocks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates the possibilities and limitations of using Regional Climate Model (RCM) output for the simulation of alpine permafrost scenarios. It focuses on the general problem of scale mismatch between RCMs and impact models and, in particular, the special challenges that arise when driving an impact model in topographically complex high-mountain environments with the output of an RCM. Two approaches are introduced that take into account the special difficulties in such areas, and thus enable the use of RCM for alpine permafrost scenario modelling. Intended as an initial example, they are applied at the area of Corvatsch (Upper Engadine, Switzerland) in order to demonstrate and discuss the application of the two approaches, rather than to provide an assessment of future changes in permafrost occurrence. There are still many uncertainties and inaccuracies inherent in climate and impact models, which increase when driving one model with the output of the other. Nevertheless, our study shows that the use of RCMs offers new and promising perspectives for the simulation of high-mountain permafrost scenarios

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recession of mountain glaciers around the world has been linked to anthropogenic climate change and small glaciers (e.g. < 2 km2) are thought to be particularly vulnerable, with reports of their disappearance from several regions. However, the response of small glaciers to climate change can be modulated by non-climatic factors such as topography and debris cover and there remain a number of regions where their recent change has evaded scrutiny. This paper presents results of the first multi-year remote sensing survey of glaciers in the Kodar Mountains, the only glaciers in SE Siberia, which we compare to previous glacier inventories from this continental setting that reported total glacier areas of 18.8 km2 in ca. 1963 (12.6 km2 of exposed ice) and 15.5 km2 in 1974 (12 km2 of exposed ice). Mapping their debris-covered termini is difficult but delineation of debris-free ice on Landsat imagery reveals 34 glaciers with a total area of 11.72 ± 0.72 km2 in 1995, followed by a reduction to 9.53 ± 0.29 km2 in 2001 and 7.01 ± 0.23 km2 in 2010. This represents a ~ 44% decrease in exposed glacier ice between ca. 1963 and 2010, but with 40% lost since 1995 and with individual glaciers losing as much as 93% of their exposed ice. Thus, although continental glaciers are generally thought to be less sensitive than their maritime counterparts, a recent acceleration in shrinkage of exposed ice has taken place and we note its coincidence with a strong summer warming trend in the region initiated at the start of the 1980s. Whilst smaller and shorter glaciers have, proportionally, tended to shrink more rapidly, we find no statistically significant relationship between shrinkage and elevation characteristics, aspect or solar radiation. This is probably due to the small sample size, limited elevation range, and topographic setting of the glaciers in deep valleys-heads. Furthermore, many of the glaciers possess debris-covered termini and it is likely that the ablation of buried ice is lagging the shrinkage of exposed ice, such that a growth in the proportion of debris cover is occurring, as observed elsewhere. If recent trends continue, we hypothesise that glaciers could evolve into a type of rock glacier within the next few decades, introducing additional complexity in their response and delaying their potential demise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surface-based GPS measurements of zenith path delay (ZPD) can be used to derive vertically integrated water vapor (IWV) of the atmosphere. ZPD data are collected in a global network presently consisting of 160 stations as part of the International GPS Service. In the present study, ZPD data from this network are converted into IWV using observed surface pressure and mean atmospheric water vapor column temperature obtained from the European Centre for Medium-Range Weather Forecasts' (ECMWF) operational analyses (OA). For the 4 months of January/July 2000/2001, the GPS-derived IWV values are compared to the IWV from the ECMWF OA, with a special focus on the monthly averaged difference (bias) and the standard deviation of daily differences. This comparison shows that the GPS-derived IWV values are well suited for the validation of OA of IWV. For most GPS stations, the IWV data agree quite well with the analyzed data indicating that they are both correct at these locations. Larger differences for individual days are interpreted as errors in the analyses. A dry bias in the winter is found over central United States, Canada, and central Siberia, suggesting a systematic analysis error. Larger differences were mainly found in mountain areas. These were related to representation problems and interpolation difficulties between model height and station height. In addition, the IWV comparison can be used to identify errors or problems in the observations of ZPD. This includes errors in the data itself, e.g., erroneous outlier in the measured time series, as well as systematic errors that affect all IWV values at a specific station. Such stations were excluded from the intercomparison. Finally, long-term requirements for a GPS-based water vapor monitoring system are discussed.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Total ozone trends are typically studied using linear regression models that assume a first-order autoregression of the residuals [so-called AR(1) models]. We consider total ozone time series over 60°S–60°N from 1979 to 2005 and show that most latitude bands exhibit long-range correlated (LRC) behavior, meaning that ozone autocorrelation functions decay by a power law rather than exponentially as in AR(1). At such latitudes the uncertainties of total ozone trends are greater than those obtained from AR(1) models and the expected time required to detect ozone recovery correspondingly longer. We find no evidence of LRC behavior in southern middle-and high-subpolar latitudes (45°–60°S), where the long-term ozone decline attributable to anthropogenic chlorine is the greatest. We thus confirm an earlier prediction based on an AR(1) analysis that this region (especially the highest latitudes, and especially the South Atlantic) is the optimal location for the detection of ozone recovery, with a statistically significant ozone increase attributable to chlorine likely to be detectable by the end of the next decade. In northern middle and high latitudes, on the other hand, there is clear evidence of LRC behavior. This increases the uncertainties on the long-term trend attributable to anthropogenic chlorine by about a factor of 1.5 and lengthens the expected time to detect ozone recovery by a similar amount (from ∼2030 to ∼2045). If the long-term changes in ozone are instead fit by a piecewise-linear trend rather than by stratospheric chlorine loading, then the strong decrease of northern middle- and high-latitude ozone during the first half of the 1990s and its subsequent increase in the second half of the 1990s projects more strongly on the trend and makes a smaller contribution to the noise. This both increases the trend and weakens the LRC behavior at these latitudes, to the extent that ozone recovery (according to this model, and in the sense of a statistically significant ozone increase) is already on the verge of being detected. The implications of this rather controversial interpretation are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During long-range transport, many distinct processes – including photochemistry, deposition, emissions and mixing – contribute to the transformation of air mass composition. Partitioning the effects of different processes can be useful when considering the sensitivity of chemical transformation to, for example, a changing environment or anthropogenic influence. However, transformation is not observed directly, since mixing ratios are measured, and models must be used to relate changes to processes. Here, four cases from the ITCT-Lagrangian 2004 experiment are studied. In each case, aircraft intercepted a distinct air mass several times during transport over the North Atlantic, providing a unique dataset and quantifying the net changes in composition from all processes. A new framework is presented to deconstruct the change in O3 mixing ratio (Δ O3) into its component processes, which were not measured directly, taking into account the uncertainty in measurements, initial air mass variability and its time evolution. The results show that the net chemical processing (Δ O3chem) over the whole simulation is greater than net physical processing (Δ O3phys) in all cases. This is in part explained by cancellation effects associated with mixing. In contrast, each case is in a regime of either net photochemical destruction (lower tropospheric transport) or production (an upper tropospheric biomass burning case). However, physical processes influence O3 indirectly through addition or removal of precursor gases, so that changes to physical parameters in a model can have a larger effect on Δ O3chem than Δ O3phys. Despite its smaller magnitude, the physical processing distinguishes the lower tropospheric export cases, since the net photochemical O3 change is −5 ppbv per day in all three cases. Processing is quantified using a Lagrangian photochemical model with a novel method for simulating mixing through an ensemble of trajectories and a background profile that evolves with them. The model is able to simulate the magnitude and variability of the observations (of O3, CO, NOy and some hydrocarbons) and is consistent with the time-average OH following air-masses inferred from hydrocarbon measurements alone (by Arnold et al., 2007). Therefore, it is a useful new method to simulate air mass evolution and variability, and its sensitivity to process parameters.