117 resultados para Salmonella.
Resumo:
The protective effect of two vaccination regimes using Salenvac, a commercially available iron-restricted Salmonella enterica subsp. Enterica serotype Enteritidis PT4 bacterin vaccine, was verified in laying birds. Immunization was intramuscular at 1 day old and again at 4 weeks of age (V2), or at 1 day and 4 weeks with a third dose at 18 weeks of age (V3). Challenge S. Enteritidis (5 to 7.5) x 10(7) colony forming units) was given intravenously at 8, 17, 23, 30 and 59 weeks of age. For all age groups, both vaccination regimes reduced significantly the number of tissues and faecal samples that were culture positive for the challenge strain. For laying birds, fewer eggs (P < 0.001) were culture positive for S. Enteritidis after challenge from vaccinated laying birds ( 56/439 batches of eggs) than unvaccinated birds (99/252 batches). The data give compelling evidence that the vaccine is efficacious and may contribute to the reduction of layer infection and egg contamination.
Resumo:
Aims: To investigate the effect of a therapeutic and sub-therapeutic chlortetracycline treatment on tetracyclineresistant Salmonella enterica serovar Typhimurium DT104 and on the commensal Escherichia coli in pig. Methods and Results: Salmonella Typhimurium DT104 was orally administered in all pigs prior to antibiotic treatment, and monitored with the native E. coli. Higher numbers of S. Typhimurium DT104 were shed from treated pigs than untreated pigs. This lasted up to 6 weeks post-treatment in the high-dose group. In this group, there was a 30% increase in E. coli with a chlortetracycline minimal inhibitory concentration (MIC) > 16 mg l(-1) and a 10% increase in E. coli with an MIC > 50 mg l(-1) during and 2 weeks post-treatment. This effect was less-pronounced in the low-dose group. PCR identified the predominant tetracycline resistance genes in the E. coli as tetA, tetB and tetC. The concentration of chlortetracycline in the pig faeces was measured by HPLC and levels reached 80 mug g(-1) faeces during treatment. Conclusion: Chlortetracycline treatment increases the proportion of resistant enteric bacteria beyond the current withdrawal time. Significance and Impact of the Study: Treated pigs are more likely to enter abattoirs with higher levels of resistant bacteria than untreated pigs promoting the risk of these moving up the food chain and infecting man.
Resumo:
Independent studies have demonstrated that flagella are associated with the invasive process of Salmonella enterica serotypes, and aflagellate derivatives of Salmonella enterica serotype Enteritidis are attenuated in murine and avian models of infection. One widely held view is that the motility afforded by flagella, probably aided by chemotactic responses, mediates the initial interaction between bacterium and host cell. The adherence and invasion properties of two S. Enteritidis wild-type strains and isogenic aflagellate mutants were assessed on HEp-2 and Div-1 cells that are of human and avian epithelial origin, respectively. Both aflagellate derivatives showed a significant reduction of invasion compared with wild type over the three hours of the assays. Complementation of the defective fliC allele recovered partially the wild-type phenotype. Examination of the bacterium-host cell interaction by electron and confocal microscopy approaches showed that wild-type bacteria induced ruffle formation and significant cytoskeletal rearrangements on HEp-2 cells within 5 minutes of contact. The aflagellate derivatives induced fewer ruffles than wild type. Ruffle formation on the Div-1 cell line was less pronounced than for HEp-2 cells for wild-type S. Enteritidis. Collectively, these data support the hypothesis that flagella play an active role in the early events of the invasive process.
Resumo:
Cost effective control of avian diseases and food borne pathogens remains a high priority for all sectors of the poultry industry with cleansing and disinfection, vaccination and competitive exclusion approaches being used widely. Previous studies showed that Bacillus subtilis PY79(hr) was an effective competitive exclusion agent for use in poultry to control avian pathogenic Escherichia coli serotype O78:K80. Here we report experiments that were undertaken to test the efficacy of B. subtilis PY79(hr) in the control of Salmonella enterica serotype Enteritidis and Clostridium perfringens in young chickens. To do this, 1-day-old and 20-day-old specific pathogen free (SPF) chicks were dosed with a suspension of B. subtilis spores prior to challenge with S. Enteritidis (S1400) and C. perfringens, respectively. For both challenge models, a single oral inoculum of 1 x 10(9) spores given 24 h prior to challenge was sufficient to suppress colonisation and persistence of both S. Enteritidis and C perfringens. In particular, the faecal shedding of S. Enteritidis, as measured by a semi-quantitative cloacal swabbing technique, was reduced significantly for the 36 days duration of the experiment. B. subtilis persisted in the intestine although with decreasing numbers over the same period. These data add further evidence that B. subtilis spores may be effective agents in the control of avian diseases and food borne pathogens.
Resumo:
The roles of flagella and five fimbriae (SEF14, SEF17, SEF21, pef, lpf) in the early stages (up to 3 days) of Salmonella enterica serovar Enteritidis (S. Enteritidis) infection have been investigated in the rat. Wild-type strains LA5 and S1400 (fim+/fla+) and insertionally inactivated mutants unable to express the five fimbriae (fim-/fla+), flagella (fim+/fla-) or fimbriae and flagella (fim-/fla-) were used. All wild-type and mutant strains were able to colonize the gut and spread to the mesenteric lymph nodes, liver and spleen. There appeared to be little or no difference between the fim-/fla+ and wild-type (fim+/fla+) strains. In contrast, the numbers of aflagellate (fim+/fla- or fim-/fla-) salmonella in the liver and spleen were transiently reduced. In addition, fim+/fla- or fim-/fla-strains were less able to persist in the upper gastrointestinal tract and the inflammatory responses they elicited in the gut were less severe. Thus, expression of SEF14, SEF17, SEF21, pef and lpf did not appear to be a prerequisite for induction of S. Enteritidis infection in the rat. Deletion of flagella did, however, disadvantage the bacterium. This may be due to the inability to produce or release the potent immunomodulating protein flagellin.
Resumo:
The lipopolysaccharide of Salmonella and other Gram negative pathogenic species has been implicated as a major virulence determinant and in this study we report the role of LPS of S. Enteritidis in the colonisation and persistent gastrointestinal infection of young poultry. The gene encoding the unique O-antigen ligase, waaL, was mutated by insertional inactivation in a well characterised S. Enteritidis strain, S1400/94. The waaL mutant, designated PCP, produced rough colonies on agar medium, did not agglutinate O9 antiserum, did not produce an LPS ladder on silver stained gels and was serum sensitive. PCP and a nalidixic acid marked derivative of S1400/94 (S1400/94 Nal(r)) were used to orally challenge young chicks, separately and together in competitive index experiments. At post-mortem examination of 1-day-old chicks challenged S1400/94 Nal(r) and PCP separately there were no significant differences in the numbers of S1400/94 Nal(r) and PCP bacteria in tissues sampled on days 1, 2. and 5. By day 42 after challenge S1400/94 Nal(r) bacteria were recovered in significantly higher numbers than PCP from the caecal contents (P < 0.001). In competitive index studies in the 1-day-old chick PCP colonised, invaded and persisted in lower numbers than S1400/94 Nal(r). In 4-week-old chicks challenged separately, PCP bacteria were recovered from all tissues examined in significantly lower numbers than S1400/94 Nal(r). In competitive index experiments in 4-week-old chicks, PCP was not detected at any site and at any time point. Therefore, the O-antigen of S. Enteritidis plays art important role in poultry infections although this role is less important in the newly hatched chick. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved.
Flagella and curli fimbriae are important for the growth of Salmonella enterica serovars in hen eggs
Resumo:
Salmonella enterica serovar Enteritidis is unable to multiply in the albumen of fresh eggs and must gain access to the yolk contents in order to multiply to a high level (> 10(6) c.f.u. per ml egg contents). As human Salmonella infections resulting from the consumption of infected eggs more frequently involve serovar Enteritidis phage type (PT) 4 than other serovars or PTs, a number of isolates of various S. enterica serovars were examined for their ability to multiply to a high level in eggs over a period of 8 days storage at 20 degreesC. Their behaviour was compared to that of a range of defined fimbrial and flagella mutants of S. Enteritidis. Strains that did not express flagella were unable to multiply in eggs, and those deficient for curli fimbriae, including strains of S. Enteritidis PT6, displayed high-level growth in significantly fewer eggs than those able to express curli. Most S. Enteritidis strains multiplied to a high level in between 5 and 10 % of eggs during 8 days storage. One PT4 strain, though, showed high levels of growth in more than 25 % of eggs over this period, significantly higher than the other PTs or the two other isolates of PT4 tested. This ability may be important for the association of PT4 infection with the consumption of eggs.
Resumo:
The proteome of Salmonella enterica serovar Typhimurium was characterized by 2-dimensional HPLC mass spectrometry to provide a platform for subsequent proteomic investigations of low level multiple antibiotic resistance (MAR). Bacteria (2.15 +/- 0.23 x 10(10) cfu; mean +/- s.d.) were harvested from liquid culture and proteins differentially fractionated, on the basis of solubility, into preparations representative of the cytosol, cell envelope and outer membrane proteins (OMPs). These preparations were digested by treatment with trypsin and peptides separated into fractions (n = 20) by strong cation exchange chromatography (SCX). Tryptic peptides in each SCX fraction were further separated by reversed-phase chromatography and detected by mass spectrometry. Peptides were assigned to proteins and consensus rank listings compiled using SEQUEST. A total of 816 +/- 11 individual proteins were identified which included 371 +/- 33, 565 +/- 15 and 262 +/- 5 from the cytosolic, cell envelope and OMP preparations, respectively. A significant correlation was observed (r(2) = 0.62 +/- 0.10; P < 0.0001) between consensus rank position for duplicate cell preparations and an average of 74 +/- 5% of proteins were common to both replicates. A total of 34 outer membrane proteins were detected, 20 of these from the OMP preparation. A range of proteins (n = 20) previously associated with the mar locus in E. coli were also found including the key MAR effectors AcrA, TolC and OmpF.
Resumo:
Objectives: There are concerns that the use of enrofloxacin in livestock production may contribute to the development of fluoroquinolone resistance in zoonotic bacteria. The objective of our study was to investigate the effect of a single 5 day enrofloxacin treatment on Salmonella enterica serotype Typhimurium DT104 in a pig model. Results: Our results showed that a single treatment failed to eradicate S. Typhimurium DT104, which continued to be isolated up to 35 days after treatment. We also provide evidence that treatment positively selects for S. Typhimurium DT104 strains that are already nalidixic acid resistant (gyrA Asn-87) or cyclohexane resistant, the latter being indicative of an up-regulated efflux pump. Emergence of fluoroquinolone resistance was not detected during treatment or post-treatment in any of the Salmonella strains monitored. However, the effect of enrofloxacin on the nalidixic acid-resistant and cyclohexane-resistant S. Typhimurium DT104 outlasted the current withdrawal time of 10 days for Baytril (commercial veterinary formulation of enrofloxacin). Conclusions: In conclusion, our study has provided direct evidence that enrofloxacin-treated pigs could be entering abattoirs with higher numbers of quinolone-resistant zoonotic bacteria than untreated pigs, increasing the risk of these entering the food chain.
Resumo:
Salmonella enterica isolates (n = 182) were examined for mutations in the quinolone resistance-determining region of gyrA, gyrB, parC, and parE. The frequency, location, and type of GyrA substitution varied with the serovar. Mutations were found in parC that encoded Thr57-Ser, Thr66-Ile, and Ser80-Arg substitutions. Mutations in the gyrB quinolone resistance-determining region were located at codon Tyr420-Cys or Arg437-Len. Novel mutations were also found in parE encoding Glu453-Gly, His461-Tyr, Ala498-Thr, Val512-Gly, and Ser518-Cys. Although it is counterintuitive, isolates with a mutation in both gyrA and parC were more susceptible to ciprofloxacin than were isolates with a mutation in gyrA alone.
Resumo:
The CpxAR (Cpx) two-component regulator controls the expression of genes in response to a variety of environmental cues. The Cpx regulator has been implicated in the virulence of several gram-negative pathogens, although a role for Cpx in vivo has not been demonstrated directly. Here we investigate whether positive or negative control of gene expression by Cpx is important for the pathogenesis of Salmonella enterica serotype Typhimurium. The Cpx signal pathway in serotype Typhimurium was disrupted by insertional inactivation of the cpxA and cpxR genes. We also constitutively activated the Cpx pathway by making an internal in-frame deletion in cpxA (a cpxA* mutation). Activation of the Cpx pathway inhibited induction of the envelope stress response pathway controlled by the alternative sigma factor sigma(E) (encoded by rpoE). Conversely, the Cpx pathway was highly up-regulated (>40-fold) in a serotype Typhimurium rpoE mutant. The cpxA* mutation, but not the cpxA or the cpxR mutation, significantly reduced the capacity of serotype Typhimurium to adhere to and invade eucaryotic cells, although intracellular replication was not affected. The cpxA and cpxA* mutations significantly impaired the ability of serotype Typhimurium to grow in vivo in mice. To our knowledge, this is the first demonstration that the Cpx system is important for a bacterial pathogen in vivo.
Resumo:
Objectives: To examine 397 strains of Salmonella enterica of human and animal origin comprising 35 serotypes for the presence of aadB, aphAI-IAB, aadA1, aadA2, bla(Carb(2)) or pse1, bla(Tem), cat1, cat2, dhfr1, floR, strA, sul1, sul2, tetA(A), tetA(B) and tetA(G) genes, the presence of class 1 integrons and the relationship of resistance genes to integrons and antibiotic resistance. Results: Some strains were resistant to ampicillin (91), chloramphenicol (85), gentamicin (2), kanamycin (14), spectinomycin (81), streptomycin (119), sulfadiazine (127), tetracycline (108) and trimethoprim (45); 219 strains were susceptible to all antibiotics. bla(Carb(2)), floR and tetA(G) genes were found in S. Typhimurium isolates and one strain of S. Emek only. Class 1 integrons were found in S. Emek, Haifa, Heidelberg, Mbandaka, Newport, Ohio, Stanley, Virchow and in Typhimurium, mainly phage types DT104 and U302. These strains were generally multi-resistant to up to seven antibiotics. Resistance to between three and six antibiotics was also associated with class 1 integron-negative strains of S. Binza, Dublin, Enteritidis, Hadar, Manhattan, Mbandaka, Montevideo, Newport, Typhimurium DT193 and Virchow. Conclusion: The results illustrate specificity of some resistance genes to S. Typhimurium or non- S. Typhimurium serotypes and the involvement of both class 1 integron and non-class 1 integron associated multi-resistance in several serotypes. These data also indicate that the bla(Carb(2)), floR and tetA(G) genes reported in the SG1 region of S. Typhimurium DT104, U302 and some other serotypes are still predominantly limited to S. Typhimurium strains.
Resumo:
Objective: To determine the effect of growth of five strains of Salmonella enterica and their isogenic multiply antibiotic-resistant (MAR) derivatives with a phenolic farm disinfectant or triclosan (biocides) upon the frequency of mutation to resistance to antibiotics or cyclohexane. Methods: Strains were grown in broth with or without the biocides and then spread on to agar containing ampicillin, ciprofloxacin or tetracycline each at 4x MIC or agar overlaid with cyclohexane. Incubation was for 24 and 48 h and the frequency of mutation to resistance was calculated for strains with and without prior growth with the biocides. MICs were determined and the presence of mutations in the acrR and marR regions was determined by sequencing and the presence of mutations in gyrA by light-cycler analysis, for a selection of the mutants that arose. Results: The mean frequency of mutation to antibiotic or cyclohexane resistance was increased similar to10- to 100-fold by prior growth with the phenolic disinfectant or triclosan. The increases were statistically significant for all antibiotics and cyclohexane following exposure to the phenolic disinfectant (P less than or equal to 0.013), and for ampicillin and cyclohexane following exposure to triclosan (P less than or equal to 0.009). Mutants inhibited by >1 mg/L ciprofloxacin arose only from strains that were MAR. Reduced susceptibility to ciprofloxacin (at 4x MIC for parent strains) alone was associated with mutations in gyrA. MAR mutants did not contain mutations in the acrR or marR region. Conclusions: These data renew fears that the use of biocides may lead to an increased selective pressure towards antibiotic resistance.