67 resultados para Riparian areas -- Paraguay -- Asunción
Resumo:
In Mediterranean areas, conventional tillage increases soil organic matter losses, reduces soil quality, and contributes to climate change due to increased CO2 emissions. CO2 sequestration rates in soil may be enhanced by appropriate agricultural soil management and increasing soil organic matter content. This study analyzes the stratification ratio (SR) index of soil organic carbon (SOC), nitrogen (N) and C:N ratio under different management practices in an olive grove (OG) in Mediterranean areas (Andalusia, southern Spain). Management practices considered in this study are conventional tillage (CT) and no tillage (NT). In the first case, CT treatments included addition of alperujo (A) and olive leaves (L). A control plot with no addition of olive mill waste was considered (CP). In the second case, NT treatments included addition of chipped pruned branches (NT1) and chipped pruned branches and weeds (NT2). The SRs of SOC increased with depth for all treatments. The SR of SOC was always higher in NT compared to CT treatments, with the highest SR of SOC observed under NT2. The SR of N increased with depth in all cases, ranging between 0.89 (L-SR1) and 39.11 (L-SR3 and L-SR4).The SR of C:N ratio was characterized by low values, ranging from 0.08 (L-SR3) to 1.58 (NT1-SR2) and generally showing higher values in SR1 and SR2 compared to those obtained in SR3 and SR4. This study has evaluated several limitations to the SR index such as the fact that it is descriptive but does not analyze the behavior of the variable over time. In addition, basing the assessment of soil quality on a single variable could lead to an oversimplification of the assessment. Some of these limitations were experienced in the assessment of L, where SR1 of SOC was the lowest of the studied soils. In this case, the higher content in the second depth interval compared to the first was caused by the intrinsic characteristics of this soil's formation process rather than by degradation. Despite the limitations obtained SRs demonstrate that NT with the addition of organic material improves soil quality.
Resumo:
Sensory Objects presented their research and their Sensory Labels for the British Museum at a seminar called Access All Areas organised by the Visitor Users Group.
Resumo:
A cornerstone of conservation is the designation and management of protected areas (PAs): locations often under conservation management containing species of conservation concern, where some development and other detrimental influences are prevented or mitigated. However, the value of PAs for conserving biodiversity in the long term has been questioned given that species are changing their distributions in response to climatic change. There is a concern that PAs may become climatically unsuitable for those species that they were designated to protect, and may not be located appropriately to receive newly-colonizing species for which the climate is improving. In the present study, we analyze fine-scale distribution data from detailed resurveys of seven butterfly and 11 bird species in Great Britain aiming to examine any effect of PA designation in preventing extinctions and promoting colonizations. We found a positive effect of PA designation on species' persistence at trailing-edge warm range margins, although with a decreased magnitude at higher latitudes and altitudes. In addition, colonizations by range expanding species were more likely to occur on PAs even after altitude and latitude were taken into account. PAs will therefore remain an important strategy for conservation. The potential for PA management to mitigate the effects of climatic change for retracting species deserves further investigation.
Resumo:
The effect of variations in land cover on mean radiant surface temperature (Tmrt) is explored through a simple scheme developed within the radiation model SOLWEIG. Outgoing longwave radiation is parameterised using surface temperature observations on a grass and an asphalt surface, whereas outgoing shortwave radiation is modelled through variations in albedo for the different surfaces. The influence of surface materials on Tmrt is small compared to the effects of shadowing. Nevertheless, altering ground surface materials could contribute to a reduction on Tmrt to reduce the radiant load during heat-wave episodes in locations where shadowing is not an option. Evaluation of the new scheme suggests that despite its simplicity it can simulate the outgoing fluxes well, especially during sunny conditions. However, it underestimates at night and in shadowed locations. One grass surface used to develop the parameterisation, with very different characteristics compared to an evaluation grass site, caused Tmrt to be underestimated. The implications of using high resolution (e.g. 15 minutes) temporal forcing data under partly cloudy conditions are demonstrated even for fairly proximal sites.
Resumo:
Dissolved oxygen (DO) concentrations showed a striking pattern in a multi-year study of the River Enborne, a small river in SE England. In each of three years (2010-2012), maximum DO concentrations were attained in mid-April, preceded by a period of steadily increasing diurnal amplitudes, followed by a steady reduction in both amplitude and concentration. Flow events during the reduction period reduce DO to low concentrations until the following spring. Evidence is presented that this pattern is mainly due to benthic algal growth which is eventually supressed by the growth of the riparian tree canopy. Nitrate and silicate concentrations are too high to inhibit the growth of either benthic algae or phytoplankton, but phosphate concentrations might have started to reduce growth if the tree canopy development had been delayed. This interpretation is supported by evidence from weekly flow cytometry measurements and analysis of the diurnal, seasonal and annual patterns of nutrient concentrations. As the tree canopy develops, the river switches from an autotrophic to a heterotrophic state. The results support the use of riparian shading to help control algal growth, and highlight the risks of reducing riparian shade.