66 resultados para Representation and information retrieval technologies
Resumo:
Recent advancement in wireless communication technologies and automobiles have enabled the evolution of Intelligent Transport System (ITS) which addresses various vehicular traffic issues like traffic congestion, information dissemination, accident etc. Vehicular Ad-hoc Network (VANET) a distinctive class of Mobile ad-hoc Network (MANET) is an integral component of ITS in which moving vehicles are connected and communicate wirelessly. Wireless communication technologies play a vital role in supporting both Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication in VANET. This paper surveys some of the key vehicular wireless access technology standards such as 802.11p, P1609 protocols, Cellular System, CALM, MBWA, WiMAX, Microwave, Bluetooth and ZigBee which served as a base for supporting both Safety and Non Safety applications. It also analyses and compares the wireless standards using various parameters such as bandwidth, ease of use, upfront cost, maintenance, accessibility, signal coverage, signal interference and security. Finally, it discusses some of the issues associated with the interoperability among those protocols.
Resumo:
Social network has gained remarkable attention in the last decade. Accessing social network sites such as Twitter, Facebook LinkedIn and Google+ through the internet and the web 2.0 technologies has become more affordable. People are becoming more interested in and relying on social network for information, news and opinion of other users on diverse subject matters. The heavy reliance on social network sites causes them to generate massive data characterised by three computational issues namely; size, noise and dynamism. These issues often make social network data very complex to analyse manually, resulting in the pertinent use of computational means of analysing them. Data mining provides a wide range of techniques for detecting useful knowledge from massive datasets like trends, patterns and rules [44]. Data mining techniques are used for information retrieval, statistical modelling and machine learning. These techniques employ data pre-processing, data analysis, and data interpretation processes in the course of data analysis. This survey discusses different data mining techniques used in mining diverse aspects of the social network over decades going from the historical techniques to the up-to-date models, including our novel technique named TRCM. All the techniques covered in this survey are listed in the Table.1 including the tools employed as well as names of their authors.
Resumo:
The literature on agricultural markets suggests that transactions costs are the main obstacles preventing households from participating in agricultural markets. We examine the impact of the recent massive penetration of information communication technologies (ICTs), particularly mobile phones and radios, in developing countries to investigate the role of information in economic transactions and participation in food crop markets. To fully capture market participation behaviours, the current theoretical framework on market participation and transactions costs is extended to include those households that sell and buy in the same time period. We correct for endogeneity and selectivity throughout our models. We used a novel dataset of 393 households in northern Ghana with detailed information on market transactions and ICTs usage. Results show that receiving market information via mobile phones has a positive and significant impact on market participation, with a greater impact for households with a surplus of food crops. We find that radios have a larger impact on the quantity traded. This may reflect the nature of mobile phones in reducing searching costs, whereas radios provide an updated and regular flow of information which affects the pattern of crops consumed and sold. We also emphasise that the most significant factor is how ICTs are used, rather than their ownership.
Resumo:
Collocations between two satellite sensors are occasions where both sensors observe the same place at roughly the same time. We study collocations between the Microwave Humidity Sounder (MHS) on-board NOAA-18 and the Cloud Profiling Radar (CPR) on-board CloudSat. First, a simple method is presented to obtain those collocations and this method is compared with a more complicated approach found in literature. We present the statistical properties of the collocations, with particular attention to the effects of the differences in footprint size. For 2007, we find approximately two and a half million MHS measurements with CPR pixels close to their centrepoints. Most of those collocations contain at least ten CloudSat pixels and image relatively homogeneous scenes. In the second part, we present three possible applications for the collocations. Firstly, we use the collocations to validate an operational Ice Water Path (IWP) product from MHS measurements, produced by the National Environment Satellite, Data and Information System (NESDIS) in the Microwave Surface and Precipitation Products System (MSPPS). IWP values from the CloudSat CPR are found to be significantly larger than those from the MSPPS. Secondly, we compare the relation between IWP and MHS channel 5 (190.311 GHz) brightness temperature for two datasets: the collocated dataset, and an artificial dataset. We find a larger variability in the collocated dataset. Finally, we use the collocations to train an Artificial Neural Network and describe how we can use it to develop a new MHS-based IWP product. We also study the effect of adding measurements from the High Resolution Infrared Radiation Sounder (HIRS), channels 8 (11.11 μm) and 11 (8.33 μm). This shows a small improvement in the retrieval quality. The collocations described in the article are available for public use.
Resumo:
We investigate the practices by which bilingual university students in Hong Kong appropriate texts in producing utterances, particularly written texts. Following Wertsch and his colleagues we ask: • To what extent do our students appropriate texts in constructing their own discourses? • What linguistic means do they use to do this? • What can these processes tell us about what they now can do with discourse representation; and • What do we need to teach them? This research shows that our students' writing displays considerable intertextuality and interdiscursivity. Responses to this writing in tutorial sessions indicate that they are skilled at orchestrating the multiple voices within their own discourses. The commonly stated concern that our students do not know how to do quotation and citation correctly is somewhat misplaced and researchers need to move the focus away from the mechanisms of citation and attribution to the social practices of textual appropriation.
Resumo:
The co-polar correlation coefficient (ρhv) has many applications, including hydrometeor classification, ground clutter and melting layer identification, interpretation of ice microphysics and the retrieval of rain drop size distributions (DSDs). However, we currently lack the quantitative error estimates that are necessary if these applications are to be fully exploited. Previous error estimates of ρhv rely on knowledge of the unknown "true" ρhv and implicitly assume a Gaussian probability distribution function of ρhv samples. We show that frequency distributions of ρhv estimates are in fact highly negatively skewed. A new variable: L = -log10(1 - ρhv) is defined, which does have Gaussian error statistics, and a standard deviation depending only on the number of independent radar pulses. This is verified using observations of spherical drizzle drops, allowing, for the first time, the construction of rigorous confidence intervals in estimates of ρhv. In addition, we demonstrate how the imperfect co-location of the horizontal and vertical polarisation sample volumes may be accounted for. The possibility of using L to estimate the dispersion parameter (µ) in the gamma drop size distribution is investigated. We find that including drop oscillations is essential for this application, otherwise there could be biases in retrieved µ of up to ~8. Preliminary results in rainfall are presented. In a convective rain case study, our estimates show µ to be substantially larger than 0 (an exponential DSD). In this particular rain event, rain rate would be overestimated by up to 50% if a simple exponential DSD is assumed.