66 resultados para Regime Shifts
Resumo:
Georeferencing is one of the major tasks of satellite-borne remote sensing. Compared to traditional indirect methods, direct georeferencing through a Global Positioning System/inertial navigation system requires fewer and simpler steps to obtain exterior orientation parameters of remotely sensed images. However, the pixel shift caused by geographic positioning error, which is generally derived from boresight angle as well as terrain topography variation, can have a great impact on the precision of georeferencing. The distribution of pixel shifts introduced by the positioning error on a satellite linear push-broom image is quantitatively analyzed. We use the variation of the object space coordinate to simulate different kinds of positioning errors and terrain topography. Then a total differential method was applied to establish a rigorous sensor model in order to mathematically obtain the relationship between pixel shift and positioning error. Finally, two simulation experiments are conducted using the imaging parameters of Chang’ E-1 satellite to evaluate two different kinds of positioning errors. The experimental results have shown that with the experimental parameters, the maximum pixel shift could reach 1.74 pixels. The proposed approach can be extended to a generic application for imaging error modeling in remote sensing with terrain variation.
Resumo:
We review the effects of dynamical variability on clouds and radiation in observations and models and discuss their implications for cloud feedbacks. Jet shifts produce robust meridional dipoles in upper-level clouds and longwave cloud-radiative effect (CRE), but low-level clouds, which do not simply shift with the jet, dominate the shortwave CRE. Because the effect of jet variability on CRE is relatively small, future poleward jet shifts with global warming are only a second-order contribution to the total CRE changes around the midlatitudes, suggesting a dominant role for thermodynamic effects. This implies that constraining the dynamical response is unlikely to reduce the uncertainty in extratropical cloud feedback. However, we argue that uncertainty in the cloud-radiative response does affect the atmospheric circulation response to global warming, by modulating patterns of diabatic forcing. How cloud feedbacks can affect the dynamical response to global warming is an important topic of future research.
Resumo:
We study the dynamical properties of certain shift spaces. To help study these properties we introduce two new classes of shifts, namely boundedly supermultiplicative (BSM) shifts and balanced shifts. It turns out that any almost specified shift is both BSM and balanced, and any balanced shift is BSM. However, as we will demonstrate, there are examples of shifts which are BSM but not balanced. We also study the measure theoretic properties of balanced shifts. We show that a shift space admits a Gibbs state if and only if it is balanced. Restricting ourselves to S-gap shifts, we relate certain dynamical properties of an S-gap shift to combinatorial properties from expansions in non-integer bases. This identification allows us to use the machinery from expansions in non-integer bases to give straightforward constructions of S -gap shifts with certain desirable properties. We show that for any q∈(0,1) there is an S-gap shift which has the specification property and entropy q . We also use this identification to address the question, for a given q∈(0,1), how many S-gap shifts exist with entropy q? For certain exceptional values of q there is a unique S-gap shift with this entropy.
Resumo:
Inspired by the commercial desires of global brands and retailers to access the lucrative green consumer market, carbon is increasingly being counted and made knowable at the mundane sites of everyday production and consumption, from the carbon footprint of a plastic kitchen fork to that of an online bank account. Despite the challenges of counting and making commensurable the global warming impact of a myriad of biophysical and societal activities, this desire to communicate a product or service's carbon footprint has sparked complicated carbon calculative practices and enrolled actors at literally every node of multi-scaled and vastly complex global supply chains. Against this landscape, this paper critically analyzes the counting practices that create the ‘e’ in ‘CO2e’. It is shown that, central to these practices are a series of tools, models and databases which, in building upon previous work (Eden, 2012 and Star and Griesemer, 1989) we conceptualize here as ‘boundary objects’. By enrolling everyday actors from farmers to consumers, these objects abstract and stabilize greenhouse gas emissions from their messy material and social contexts into units of CO2e which can then be translated along a product's supply chain, thereby establishing a new currency of ‘everyday supply chain carbon’. However, in making all greenhouse gas-related practices commensurable and in enrolling and stabilizing the transfer of information between multiple actors these objects oversee a process of simplification reliant upon, and subject to, a multiplicity of approximations, assumptions, errors, discrepancies and/or omissions. Further the outcomes of these tools are subject to the politicized and commercial agendas of the worlds they attempt to link, with each boundary actor inscribing different meanings to a product's carbon footprint in accordance with their specific subjectivities, commercial desires and epistemic framings. It is therefore shown that how a boundary object transforms greenhouse gas emissions into units of CO2e, is the outcome of distinct ideologies regarding ‘what’ a product's carbon footprint is and how it should be made legible. These politicized decisions, in turn, inform specific reduction activities and ultimately advance distinct, specific and increasingly durable transition pathways to a low carbon society.
Resumo:
This article explores the way users of an online gay chat room negotiate the exchange of photographs and the conduct of video conferencing sessions and how this negotiation changes the way participants manage their interactions and claim and impute social identities. Different modes of communication provide users with different resources for the control of information, affecting not just what users are able to reveal, but also what they are able to conceal. Thus, the shift from a purely textual mode for interacting to one involving visual images fundamentally changes the kinds of identities and relationships available to users. At the same time, the strategies users employ to negotiate these shifts of mode can alter the resources available in different modes. The kinds of social actions made possible through different modes, it is argued, are not just a matter of the modes themselves but also of how modes are introduced into the ongoing flow of interaction.
Resumo:
With a focus on key themes and debates, this article aims to illustrate and assess how the interaction between justice and politics has shaped the international regime and defined the nature of the international agreement that was signed in COP21 Paris. The work demonstrates that despite the rise of neo-conservatism and self-interested power politics, questions of global distributive justice remain a central aspect of the international politics of climate change. However, while it is relatively easy to demonstrate that international climate politics is not beyond the reach of moral contestations, the assessment of exactly how much impact justice has on climate policies and the broader normative structures of the climate governance regime remains a very difficult task. As the world digests the Paris Agreement, it is vital that the current state of justice issues within the international climate change regime is comprehensively understood by scholars of climate justice and by academics and practitioners, not least because how these intractable issues of justice are dealt with (or not) will be a crucial factor in determining the effectiveness of the emerging climate regime.