86 resultados para Rainfall frequencies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Record-breaking rainfall amounts and intensities were observed at several raingauges in central Europe during the first half of August 2002 (Fig. 1). They produced flash floods in small rivers in the Erz Mountains, the Bohemian Forest and in Lower Austria (see Fig. 2), followed by record-breaking floods of larger rivers fed from these areas. The Vltava submerged parts of the city of Prague on 13± 15 August, and subsequently the Elbe flooded parts of Dresden and further villages and towns located downstream. The gauge level of 9.40m measured at Dresden on 17 August 2002 is the highest level since 1275, exceeding the former maximum level of 8.77m recorded in 1845 (Grollmann and Simon 2002). Parts of the Danube catchment were also affected by severe flooding. There were 100 fatalities connected with the floods in central Europe, and the economic loss is estimated at 9 billion Euros for Germany (German government’s estimate), 3 billion Euros for Austria, and 2.5 billion Euros for the Czech Republic (estimates from Boyle 2002). The event thus replaced the European winter storm Lothar of December 1999 (Ulbrich et al. 2001) as the most expensive weather-related catastrophe in Europe in recent decades (see Cornford 2002). In this study, we give an overview of the exceptional rainfall experienced over wide areas on 12/13 August 2002, and the resulting floods. Further events during early August 2002, in particular the event on 6/7 August in Lower Austria, are briefly mentioned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Sahelian drought of the 1970s–1990s was one of the largest humanitarian disasters of the past 50 years, causing up to 250,000 deaths and creating 10 million refugees1. It has been attributed to natural variability2–5, overgrazing6 and the impact of industrial emissions of sulphur dioxide7,8. Each mechanism can influence the Atlantic sea surface temperature gradient, which is strongly coupled to Sahelian precipitation2,3. We suggest that sporadic volcanic eruptions in the Northern Hemisphere also strongly influence this gradient and cause Sahelian drought. Using de-trended observations from 1900 to 2010, we show that three of the four driest Sahelian summers were preceded by substantial Northern Hemisphere volcanic eruptions. We use a state-ofthe- art coupled global atmosphere–ocean model to simulate both episodic volcanic eruptions and geoengineering by continuous deliberate injection into the stratosphere. In either case, large asymmetric stratospheric aerosol loadings concentrated in the Northern Hemisphere are a harbinger of Sahelian drought whereas those concentrated in the Southern Hemisphere induce a greening of the Sahel. Further studies of the detailed regional impacts on the Sahel and other vulnerable areas are required to inform policymakers in developing careful consensual global governance before any practical solar radiation management geoengineering scheme is implemented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two different TAMSAT (Tropical Applications of Meteorological Satellites) methods of rainfall estimation were developed for northern and southern Africa, based on Meteosat images. These two methods were used to make rainfall estimates for the southern rainy season from October 1995 to April 1996. Estimates produced by both TAMSAT methods and estimates produced by the CPC (Climate Prediction Center) method were then compared with kriged data from over 800 raingauges in southern Africa. This shows that operational TAMSAT estimates are better over plateau regions, with 59% of estimates within one standard error (s.e.) of the kriged rainfall. Over mountainous regions the CPC approach is generally better, although all methods underestimate and give only 40% of estimates within 1 s.e. The two TAMSAT methods show little difference across a whole season, but when looked at in detail the northern method gives unsatisfactory calibrations. The CPC method does have significant overall improvements by building in real-time raingauge data, but only where sufficient raingauges are available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces and evaluates DryMOD, a dynamic water balance model of the key hydrological process in drylands that is based on free, public-domain datasets. The rainfall model of DryMOD makes optimal use of spatially disaggregated Tropical Rainfall Measuring Mission (TRMM) datasets to simulate hourly rainfall intensities at a spatial resolution of 1-km. Regional-scale applications of the model in seasonal catchments in Tunisia and Senegal characterize runoff and soil moisture distribution and dynamics in response to varying rainfall data inputs and soil properties. The results highlight the need for hourly-based rainfall simulation and for correcting TRMM 3B42 rainfall intensities for the fractional cover of rainfall (FCR). Without FCR correction and disaggregation to 1 km, TRMM 3B42 based rainfall intensities are too low to generate surface runoff and to induce substantial changes to soil moisture storage. The outcomes from the sensitivity analysis show that topsoil porosity is the most important soil property for simulation of runoff and soil moisture. Thus, we demonstrate the benefit of hydrological investigations at a scale, for which reliable information on soil profile characteristics exists and which is sufficiently fine to account for the heterogeneities of these. Where such information is available, application of DryMOD can assist in the spatial and temporal planning of water harvesting according to runoff-generating areas and the runoff ratio, as well as in the optimization of agricultural activities based on realistic representation of soil moisture conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Runoff generation processes and pathways vary widely between catchments. Credible simulations of solute and pollutant transport in surface waters are dependent on models which facilitate appropriate, catchment-specific representations of perceptual models of the runoff generation process. Here, we present a flexible, semi-distributed landscape-scale rainfall-runoff modelling toolkit suitable for simulating a broad range of user-specified perceptual models of runoff generation and stream flow occurring in different climatic regions and landscape types. PERSiST (the Precipitation, Evapotranspiration and Runoff Simulator for Solute Transport) is designed for simulating present-day hydrology; projecting possible future effects of climate or land use change on runoff and catchment water storage; and generating hydrologic inputs for the Integrated Catchments (INCA) family of models. PERSiST has limited data requirements and is calibrated using observed time series of precipitation, air temperature and runoff at one or more points in a river network. Here, we apply PERSiST to the river Thames in the UK and describe a Monte Carlo tool for model calibration, sensitivity and uncertainty analysis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate data are used in a number of applications including climate risk management and adaptation to climate change. However, the availability of climate data, particularly throughout rural Africa, is very limited. Available weather stations are unevenly distributed and mainly located along main roads in cities and towns. This imposes severe limitations to the availability of climate information and services for the rural community where, arguably, these services are needed most. Weather station data also suffer from gaps in the time series. Satellite proxies, particularly satellite rainfall estimate, have been used as alternatives because of their availability even over remote parts of the world. However, satellite rainfall estimates also suffer from a number of critical shortcomings that include heterogeneous time series, short time period of observation, and poor accuracy particularly at higher temporal and spatial resolutions. An attempt is made here to alleviate these problems by combining station measurements with the complete spatial coverage of satellite rainfall estimates. Rain gauge observations are merged with a locally calibrated version of the TAMSAT satellite rainfall estimates to produce over 30-years (1983-todate) of rainfall estimates over Ethiopia at a spatial resolution of 10 km and a ten-daily time scale. This involves quality control of rain gauge data, generating locally calibrated version of the TAMSAT rainfall estimates, and combining these with rain gauge observations from national station network. The infrared-only satellite rainfall estimates produced using a relatively simple TAMSAT algorithm performed as good as or even better than other satellite rainfall products that use passive microwave inputs and more sophisticated algorithms. There is no substantial difference between the gridded-gauge and combined gauge-satellite products over the test area in Ethiopia having a dense station network; however, the combined product exhibits better quality over parts of the country where stations are sparsely distributed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leading patterns of observed monthly extreme rainfall variability in Australia are examined using an Empirical Orthogonal Teleconnection (EOT) method. Extreme rainfall variability is more closely related to mean rainfall variability during austral summer than in winter. The leading EOT patterns of extreme rainfall explain less variance in Australia-wide extreme rainfall than is the case for mean rainfall EOTs. We illustrate that, as with mean rainfall, the El Niño-Southern Oscillation (ENSO) has the strongest association with warm-season extreme rainfall variability, while in the cool-season the primary drivers are atmospheric blocking and the subtropical ridge. The Indian Ocean Dipole and Southern Annular Mode also have significant relationships with patterns of variability during austral winter and spring. Leading patterns of summer extreme rainfall variability have predictability several months ahead from Pacific sea surface temperatures (SSTs) and as much as a year in advance from Indian Ocean SSTs. Predictability from the Pacific is greater for wetter than average summer months than for months that are drier than average, whereas for the Indian Ocean the relationship has greater linearity. Several cool-season EOTs are associated with mid-latitude synoptic-scale patterns along the south and east coasts. These patterns have common atmospheric signatures denoting moist onshore flow and strong cyclonic anomalies often to the north of a blocking anti-cyclone. Tropical cyclone activity is observed to have significant relationships with some warm season EOTs. This analysis shows that extreme rainfall variability in Australia can be related to remote drivers and local synoptic-scale patterns throughout the year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the atmospheric component of a state-of-the-art climate model (HadGEM2-ES) has been used to investigate the impacts of regional anthropogenic sulphur dioxide emissions on boreal summer Sahel rainfall. The study focuses on the transient response of the West African monsoon (WAM) to a sudden change in regional anthropogenic sulphur dioxide emissions, including land surface feedbacks, but without sea surface temperature (SST) feedbacks. The response occurs in two distinct phases: 1) fast adjustment of the atmosphere on a time scale of days to weeks (up to 3 weeks) through aerosol-radiation and aerosol-cloud interactions with weak hydrological cycle changes and surface feedbacks. 2) adjustment of the atmosphere and land surface with significant local hydrological cycle changes and changes in atmospheric circulation (beyond 3 weeks). European emissions lead to an increase in shortwave (SW) scattering by increased sulphate burden, leading to a decrease in surface downward SW radiation which causes surface cooling over North Africa, a weakening of the Saharan heat low and WAM, and a decrease in Sahel precipitation. In contrast, Asian emissions lead to very little change in sulphate burden over North Africa, but they induce an adjustment of the Walker Circulation which leads again to a weakening of the WAM and a decrease in Sahel precipitation. The responses to European and Asian emissions during the second phase exhibit similar large scale patterns of anomalous atmospheric circulation and hydrological variables, suggesting a preferred response. The results support the idea that sulphate aerosol emissions contributed to the observed decline in Sahel precipitation in the second half of the twentieth century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Madden-Julian oscillation (MJO) is the dominant mode of intraseasonal variability in tropical rainfall on the large scale, but its signal is often obscured in individual station data, where effects are most directly felt at the local level. The Fly River system, Papua New Guinea, is one of the wettest regions on Earth and is at the heart of the MJO envelope. A 16 year time series of daily precipitation at 15 stations along the river system exhibits strong MJO modulation in rainfall. At each station, the difference in rainfall rate between active and suppressed MJO conditions is typically 40% of the station mean. The spread of rainfall between individual MJO events was small enough such that the rainfall distributions between wet and dry phases of the MJO were clearly separated at the catchment level. This implies that successful prediction of the large-scale MJO envelope will have a practical use for forecasting local rainfall. In the steep topography of the New Guinea Highlands, the mean and MJO signal in station precipitation is twice that in the satellite Tropical Rainfall Measuring Mission 3B42HQ product, emphasizing the need for ground-truthing satellite-based precipitation measurements. A clear MJO signal is also present in the river level, which peaks simultaneously with MJO precipitation input in its upper reaches but lags the precipitation by approximately 18 days on the flood plains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Indian monsoon is an important component of Earth's climate system, accurate forecasting of its mean rainfall being essential for regional food and water security. Accurate measurement of the rainfall is essential for various water-related applications, the evaluation of numerical models and detection and attribution of trends, but a variety of different gridded rainfall datasets are available for these purposes. In this study, six gridded rainfall datasets are compared against the India Meteorological Department (IMD) gridded rainfall dataset, chosen as the most representative of the observed system due to its high gauge density. The datasets comprise those based solely on rain gauge observations and those merging rain gauge data with satellite-derived products. Various skill scores and subjective comparisons are carried out for the Indian region during the south-west monsoon season (June to September). Relative biases and skill metrics are documented at all-India and sub-regional scales. In the gauge-based (land-only) category, Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation of water resources (APHRODITE) and Global Precipitation Climatology Center (GPCC) datasets perform better relative to the others in terms of a variety of skill metrics. In the merged category, the Global Precipitation Climatology Project (GPCP) dataset is shown to perform better than the Climate Prediction Center Merged Analysis of Precipitation (CMAP) for the Indian monsoon in terms of various metrics, when compared with the IMD gridded data. Most of the datasets have difficulty in representing rainfall over orographic regions including the Western Ghats mountains, in north-east India and the Himalayan foothills. The wide range of skill scores seen among the datasets and even the change of sign of bias found in some years are causes of concern. This uncertainty between datasets is largest in north-east India. These results will help those studying the Indian monsoon region to select an appropriate dataset depending on their application and focus of research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

African societies are dependent on rainfall for agricultural and other water-dependent activities, yet rainfall is extremely variable in both space and time and reoccurring water shocks, such as drought, can have considerable social and economic impacts. To help improve our knowledge of the rainfall climate, we have constructed a 30-year (1983–2012), temporally consistent rainfall dataset for Africa known as TARCAT (TAMSAT African Rainfall Climatology And Time-series) using archived Meteosat thermal infra-red (TIR) imagery, calibrated against rain gauge records collated from numerous African agencies. TARCAT has been produced at 10-day (dekad) scale at a spatial resolution of 0.0375°. An intercomparison of TARCAT from 1983 to 2010 with six long-term precipitation datasets indicates that TARCAT replicates the spatial and seasonal rainfall patterns and interannual variability well, with correlation coefficients of 0.85 and 0.70 with the Climate Research Unit (CRU) and Global Precipitation Climatology Centre (GPCC) gridded-gauge analyses respectively in the interannual variability of the Africa-wide mean monthly rainfall. The design of the algorithm for drought monitoring leads to TARCAT underestimating the Africa-wide mean annual rainfall on average by −0.37 mm day−1 (21%) compared to other datasets. As the TARCAT rainfall estimates are historically calibrated across large climatically homogeneous regions, the data can provide users with robust estimates of climate related risk, even in regions where gauge records are inconsistent in time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tropical Applications of Meteorology Using Satellite and Ground-Based Observations (TAMSAT) rainfall estimates are used extensively across Africa for operational rainfall monitoring and food security applications; thus, regional evaluations of TAMSAT are essential to ensure its reliability. This study assesses the performance of TAMSAT rainfall estimates, along with the African Rainfall Climatology (ARC), version 2; the Tropical Rainfall Measuring Mission (TRMM) 3B42 product; and the Climate Prediction Center morphing technique (CMORPH), against a dense rain gauge network over a mountainous region of Ethiopia. Overall, TAMSAT exhibits good skill in detecting rainy events but underestimates rainfall amount, while ARC underestimates both rainfall amount and rainy event frequency. Meanwhile, TRMM consistently performs best in detecting rainy events and capturing the mean rainfall and seasonal variability, while CMORPH tends to overdetect rainy events. Moreover, the mean difference in daily rainfall between the products and rain gauges shows increasing underestimation with increasing elevation. However, the distribution in satellite–gauge differences demon- strates that although 75% of retrievals underestimate rainfall, up to 25% overestimate rainfall over all eleva- tions. Case studies using high-resolution simulations suggest underestimation in the satellite algorithms is likely due to shallow convection with warm cloud-top temperatures in addition to beam-filling effects in microwave- based retrievals from localized convective cells. The overestimation by IR-based algorithms is attributed to nonraining cirrus with cold cloud-top temperatures. These results stress the importance of understanding re- gional precipitation systems causing uncertainties in satellite rainfall estimates with a view toward using this knowledge to improve rainfall algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tropical Applications of Meteorology Using Satellite Data and Ground-Based Observations (TAMSAT) rainfall monitoring products have been extended to provide spatially contiguous rainfall estimates across Africa. This has been achieved through a new, climatology-based calibration, which varies in both space and time. As a result, cumulative estimates of rainfall are now issued at the end of each 10-day period (dekad) at 4-km spatial resolution with pan-African coverage. The utility of the products for decision making is improved by the routine provision of validation reports, for which the 10-day (dekadal) TAMSAT rainfall estimates are compared with independent gauge observations. This paper describes the methodology by which the TAMSAT method has been applied to generate the pan-African rainfall monitoring products. It is demonstrated through comparison with gauge measurements that the method provides skillful estimates, although with a systematic dry bias. This study illustrates TAMSAT’s value as a complementary method of estimating rainfall through examples of successful operational application.