69 resultados para Radioactive waste disposal in the ocean


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present ocean model sensitivity experiments aimed at separating the influence of the projected changes in thethermal” (near-surface air temperature) and “wind” (near-surface winds) forcing on the patterns of sea level and ocean heat content. In the North Atlantic, the distribution of sea level change is more due to thethermal” forcing, whereas it is more due to the “wind” forcing in the North Pacific; in the Southern Ocean, thethermal” and “wind” forcing have a comparable influence. In the ocean adjacent to Antarctica thethermal” forcing leads to an inflow of warmer waters on the continental shelves, which is somewhat attenuated by the “wind” forcing. The structure of the vertically integrated heat uptake is set by different processes at low and high latitudes: at low latitudes it is dominated by the heat transport convergence, whereas at high latitudes it represents a small residual of changes in the surface flux and advection of heat. The structure of the horizontally integrated heat content tendency is set by the increase of downward heat flux by the mean circulation and comparable decrease of upward heat flux by the subgrid-scale processes; the upward eddy heat flux decreases and increases by almost the same magnitude in response to, respectively, thethermal” and “wind” forcing. Regionally, the surface heat loss and deep convection weaken in the Labrador Sea, but intensify in the Greenland Sea in the region of sea ice retreat. The enhanced heat flux anomaly in the subpolar Atlantic is mainly caused by thethermal” forcing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Madden-Julian oscillation (MJO) is a convectively coupled 30-70 day (intraseasonal) tropical atmospheric mode that drives variations in global weather, but which is poorly simulated in most atmospheric general circulation models. Over the past two decades, field campaigns and modeling experiments have suggested that tropical atmosphere-ocean interactions may sustain or amplify the pattern of enhanced and suppressed atmospheric convection that defines the MJO, and encourage its eastward propagation through the Indian and Pacific Oceans. New observations collected during the past decade have advanced our understand of the ocean response to atmospheric MJO forcing and the resulting intraseasonal sea surface temperature (SST) fluctuations. Numerous modeling studies have revealed a considerable impact of the mean state on MJO ocean-atmosphere coupled processes, as well as the importance of resolving the diurnal cycle of atmosphere--upper-ocean interactions. New diagnostic methods provide insight to atmospheric variability and physical processes associated with the MJO, but offer limited insight on the role of ocean feedbacks. Consequently, uncertainty remains concerning the role of the ocean in MJO theory. Our understanding of how atmosphere-ocean coupled processes affect the MJO can be improved by collecting observations in poorly sampled regions of MJO activity, assessing oceanic and atmospheric drivers of surface fluxes, improving the representation of upper-ocean mixing in coupled-model simulations, designing model experiments that minimize mean-state differences, and developing diagnostic tools to evaluate the nature and role of coupled ocean-atmosphere processes over the MJO cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interannual-decadal variability of the wintertime mixed layer depths (MLDs) over the North Pacific is investigated from an empirical orthogonal function (EOF) analysis of an ensemble of global ocean reanalyses. The first leading EOF mode represents the interannual MLD anomalies centered in the eastern part of the central mode water formation region in phase opposition with those in the eastern subtropics and the central Alaskan Gyre. This first EOF mode is highly correlated with the Pacific decadal oscillation index on both the interannual and decadal time scales. The second leading EOF mode represents the MLD variability in the subtropical mode water (STMW) formation region and has a good correlation with the wintertime West Pacific (WP) index with time lag of 3 years, suggesting the importance of the oceanic dynamical response to the change in the surface wind field associated with the meridional shifts of the Aleutian Low. The above MLD variabilities are in basic agreement with previous observational and modeling findings. Moreover the reanalysis ensemble provides uncertainty estimates. The interannual MLD anomalies in the first and second EOF modes are consistently represented by the individual reanalyses and the amplitudes of the variabilities generally exceed the ensemble spread of the reanalyses. Besides, the resulting MLD variability indices, spanning the 1948–2012 period, should be helpful for characterizing the North Pacific climate variability. In particular, a 6-year oscillation including the WP teleconnection pattern in the atmosphere and the oceanic MLD variability in the STMW formation region is first detected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of the local atmospheric forcing on the ocean mixed layer depth (MLD) over the global oceans is studied using ocean reanalysis data products and a single-column ocean model coupled to an atmospheric general circulation model. The focus of this study is on how the annual mean and the seasonal cycle of the MLD relate to various forcing characteristics in different parts of the world's ocean, and how anomalous variations in the monthly mean MLD relate to anomalous atmospheric forcings. By analysing both ocean reanalysis data and the single-column ocean model, regions with different dominant forcings and different mean and variability characteristics of the MLD can be identified. Many of the global oceans' MLD characteristics appear to be directly linked to different atmospheric forcing characteristics at different locations. Here, heating and wind-stress are identified as the main drivers; in some, mostly coastal, regions the atmospheric salinity forcing also contributes. The annual mean MLD is more closely related to the annual mean wind-stress and the MLD seasonality is more closely to the seasonality in heating. The single-column ocean model, however, also points out that the MLD characteristics over most global ocean regions, and in particular the tropics and subtropics, cannot be maintained by local atmospheric forcings only, but are also a result of ocean dynamics that are not simulated in a single-column ocean model. Thus, lateral ocean dynamics are essentially in correctly simulating observed MLD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Arctic sea ice cover is thinning and retreating, causing changes in surface roughness that in turn modify the momentum flux from the atmosphere through the ice into the ocean. New model simulations comprising variable sea ice drag coefficients for both the air and water interface demonstrate that the heterogeneity in sea ice surface roughness significantly impacts the spatial distribution and trends of ocean surface stress during the last decades. Simulations with constant sea ice drag coefficients as used in most climate models show an increase in annual mean ocean surface stress (0.003 N/m2 per decade, 4.6%) due to the reduction of ice thickness leading to a weakening of the ice and accelerated ice drift. In contrast, with variable drag coefficients our simulations show annual mean ocean surface stress is declining at a rate of -0.002 N/m2 per decade (3.1%) over the period 1980-2013 because of a significant reduction in surface roughness associated with an increasingly thinner and younger sea ice cover. The effectiveness of sea ice in transferring momentum does not only depend on its resistive strength against the wind forcing but is also set by its top and bottom surface roughness varying with ice types and ice conditions. This reveals the need to account for sea ice surface roughness variations in climate simulations in order to correctly represent the implications of sea ice loss under global warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid development of biodiesel production technology has led to the generation of tremendous quantities of glycerol wastes, as the main by-product of the process. Stoichiometrically, it has been calculated that for every 100 kg of biodiesel, 10 kg of glycerol are produced. Based on the technology imposed by various biodiesel plants, glycerol wastes may contain numerous kinds of impurities such as methanol, salts, soaps, heavy metals and residual fatty acids. This fact often renders biodiesel-derived glycerol unprofitable for further purification. Therefore, the utilization of crude glycerol though biotechnological means represents a promising alternative for the effective management of this industrial waste. This review summarizes the effect of various impurities-contaminants that are found in biodiesel-derived crude glycerol upon its conversion by microbial strains in biotechnological processes. Insights are given concerning the technologies that are currently applied in biodiesel production, with emphasis to the impurities that are added in the composition of crude glycerol, through each step of the production process. Moreover, extensive discussion is made in relation with the impact of the nature of impurities upon the performances of prokaryotic and eukaryotic microorganisms, during crude glycerol bioconversions into a variety of high added-value metabolic products. Finally, aspects concerning ways of crude glycerol treatment for the removal of inhibitory contaminants as reported in the literature are given and comprehensively discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All Agulhas rings that were spawned at the Agulhas retrofiec- tion between 1993 and 1996 (a total of 21 rings) have been monitored using TOPEX/Poseidon satellite altimetry and followed as they moved through the southeastern Atlantic Ocean, decayed, interacted with bottom topography and each other, or dissipated completely. Rings preferentially crossed the Walvis Ridge at its deepest parts. After having crossed this ridge they have lower translational speeds, and their decay rate decreases markedly. Half the decay of long-lived rings takes place in the first 5 months of their lifetimes. In addition to the strong decay of rings in the Cape Basin, about one third of the observed rings do not seem to leave this region at all but totally disintegrate here. The interaction of rings with bottom topography, in particular with the Verna Seamount, is shown frequently to cause splitting of rings. This will enhance mixing of the rings' Indian Ocean water into that of the southern Atlantic. This localized mixing may well provide a considerable source of warm and salty Indian Ocean water into the Atlantic overturning circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observations and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NA SPG), though observations are sparse and models disagree on the details of this variability. Therefore, it is important to understand 1) the mechanisms of simulated decadal variability, 2) which parts of simulated variability are more faithful representations of reality, and 3) the implications for climate predictions. Here, we investigate the decadal variability in the NA SPG in the state-of-the-art, high resolution (0.25◦ ocean resolution), climate model ‘HadGEM3’. We find a decadal mode with a period of 17 years that explains 30% of the annual variance in related indices. The mode arises due to the advection of heat content anomalies, and shows asymmetries in the timescale of phase reversal between positive and negative phases. A negative feedback from temperature-driven density anomalies in the Labrador Sea (LS) allows for the phase reversal. The North Atlantic Oscillation (NAO), which exhibits the same periodicity, amplifies the mode. The atmosphere-ocean coupling is stronger during positive rather than negative NAO states, explaining the asymmetry. Within the NA SPG, there is potential predictability arising partly from this mode for up to 5 years. There are important similarities between observed and simulated variability, such as the apparent role for the propagation of heat content anomalies. However, observations suggest interannual LS density anomalies are salinity-driven. Salinity control of density would change the temperature feedback to the south, possibly limiting real-world predictive skill in the southern NA SPG with this model. Finally, to understand the diversity of behaviours, we analyse 42 present-generation climate models. Temperature and salinity biases are found to systematically influence the driver of density variability in the LS. Resolution is a good predictor of the biases. The dependence of variability on the background state has important implications for decadal predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmosphere only and ocean only variational data assimilation (DA) schemes are able to use window lengths that are optimal for the error growth rate, non-linearity and observation density of the respective systems. Typical window lengths are 6-12 hours for the atmosphere and 2-10 days for the ocean. However, in the implementation of coupled DA schemes it has been necessary to match the window length of the ocean to that of the atmosphere, which may potentially sacrifice the accuracy of the ocean analysis in order to provide a more balanced coupled state. This paper investigates how extending the window length in the presence of model error affects both the analysis of the coupled state and the initialized forecast when using coupled DA with differing degrees of coupling. Results are illustrated using an idealized single column model of the coupled atmosphere-ocean system. It is found that the analysis error from an uncoupled DA scheme can be smaller than that from a coupled analysis at the initial time, due to faster error growth in the coupled system. However, this does not necessarily lead to a more accurate forecast due to imbalances in the coupled state. Instead coupled DA is more able to update the initial state to reduce the impact of the model error on the accuracy of the forecast. The effect of model error is potentially most detrimental in the weakly coupled formulation due to the inconsistency between the coupled model used in the outer loop and uncoupled models used in the inner loop.