185 resultados para Radical transfer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ORAC(FL) assay was used in non-automated mode to evaluate the specific peroxyl radical scavenging properties of the aqueous soluble components of green and roasted Arabica and Robusta coffee samples. A relationship between ORAC(FL) and the concentration of CQAs (caffeoyl quinic acids) was found for the extracts from green coffee beans. Aqueous extracts from roasted coffee beans possessed equal or stronger scavenging power than that obtained for the green coffee beans extracts and the scavenging activity depended on the variety of coffee and the roasting conditions. Brews from Robusta coffee beans showed the highest ORAC(FL). The best scavenging properties for the brews from Arabica coffee beans were detected in samples prepared from coffee beans roasted under light conditions. The data indicate that, during roasting, a complex network of reactions takes place leading to the formation of a wide number of compounds possessing specific scavenging properties. Under mild roasting conditions, caffeoyl quinic acids appear to be the main components responsible for the free radical scavenging power of coffee brews. In contrast, Maillard reaction products may be the principal components with free radical scavenging activity in more severely (medium and dark) roasted coffees.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first example of an intramolecular enantioselective Michael addition of nitronates onto conjugated systems utilizing a chiral phase-transfer catalyst is described. A range of five-membered gamma-nitro esters with up to three stereocentres have been prepared and the relative and absolute configurations proven by chemical and crystallographic methods. The products are rapidly obtained and are precursors to five-membered cyclic gamma-amino acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The correlated k-distribution (CKD) method is widely used in the radiative transfer schemes of atmospheric models and involves dividing the spectrum into a number of bands and then reordering the gaseous absorption coefficients within each one. The fluxes and heating rates for each band may then be computed by discretizing the reordered spectrum into of order 10 quadrature points per major gas and performing a monochromatic radiation calculation for each point. In this presentation it is shown that for clear-sky longwave calculations, sufficient accuracy for most applications can be achieved without the need for bands: reordering may be performed on the entire longwave spectrum. The resulting full-spectrum correlated k (FSCK) method requires significantly fewer monochromatic calculations than standard CKD to achieve a given accuracy. The concept is first demonstrated by comparing with line-by-line calculations for an atmosphere containing only water vapor, in which it is shown that the accuracy of heating-rate calculations improves approximately in proportion to the square of the number of quadrature points. For more than around 20 points, the root-mean-squared error flattens out at around 0.015 K/day due to the imperfect rank correlation of absorption spectra at different pressures in the profile. The spectral overlap of m different gases is treated by considering an m-dimensional hypercube where each axis corresponds to the reordered spectrum of one of the gases. This hypercube is then divided up into a number of volumes, each approximated by a single quadrature point, such that the total number of quadrature points is slightly fewer than the sum of the number that would be required to treat each of the gases separately. The gaseous absorptions for each quadrature point are optimized such that they minimize a cost function expressing the deviation of the heating rates and fluxes calculated by the FSCK method from line-by-line calculations for a number of training profiles. This approach is validated for atmospheres containing water vapor, carbon dioxide, and ozone, in which it is found that in the troposphere and most of the stratosphere, heating-rate errors of less than 0.2 K/day can be achieved using a total of 23 quadrature points, decreasing to less than 0.1 K/day for 32 quadrature points. It would be relatively straightforward to extend the method to include other gases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasingly, the UK’s Private Finance Initiative has created a demand for construction companies to transfer knowledge from one organization or project to another. Knowledge transfer processes in such contexts face many challenges, due to the many resulting discontinuities in the involvement of organisations, personnel and information flow. This paper empirically identifies the barriers and enablers that hinder or enhance the transfer of knowledge in PFI contexts, drawing upon a questionnaire survey of construction firms. The main findings show that knowledge transfer processes in PFIs are hindered by time constraints, lack of trust, and policies, procedures, rules and regulations attached to the projects. Nevertheless, the processes of knowledge transfer are enhanced by emphasising the value and importance of a supportive leadership, participation/commitment from the relevant parties, and good communication between the relevant parties. The findings have considerable relevance to understanding the mechanism of knowledge transfer between organizations, projects and individuals within the PFI contexts in overcoming the barriers and enhancing the enablers. Furthermore, practitioners and managers can use the findings to efficiently design knowledge transfer frameworks that can be used to overcome the barriers encountered while enhancing the enablers to improve knowledge transfer processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The correlated k-distribution (CKD) method is widely used in the radiative transfer schemes of atmospheric models, and involves dividing the spectrum into a number of bands and then reordering the gaseous absorption coefficients within each one. The fluxes and heating rates for each band may then be computed by discretizing the reordered spectrum into of order 10 quadrature points per major gas, and performing a pseudo-monochromatic radiation calculation for each point. In this paper it is first argued that for clear-sky longwave calculations, sufficient accuracy for most applications can be achieved without the need for bands: reordering may be performed on the entire longwave spectrum. The resulting full-spectrum correlated k (FSCK) method requires significantly fewer pseudo-monochromatic calculations than standard CKD to achieve a given accuracy. The concept is first demonstrated by comparing with line-by-line calculations for an atmosphere containing only water vapor, in which it is shown that the accuracy of heating-rate calculations improves approximately in proportion to the square of the number of quadrature points. For more than around 20 points, the root-mean-squared error flattens out at around 0.015 K d−1 due to the imperfect rank correlation of absorption spectra at different pressures in the profile. The spectral overlap of m different gases is treated by considering an m-dimensional hypercube where each axis corresponds to the reordered spectrum of one of the gases. This hypercube is then divided up into a number of volumes, each approximated by a single quadrature point, such that the total number of quadrature points is slightly fewer than the sum of the number that would be required to treat each of the gases separately. The gaseous absorptions for each quadrature point are optimized such they minimize a cost function expressing the deviation of the heating rates and fluxes calculated by the FSCK method from line-by-line calculations for a number of training profiles. This approach is validated for atmospheres containing water vapor, carbon dioxide and ozone, in which it is found that in the troposphere and most of the stratosphere, heating-rate errors of less than 0.2 K d−1 can be achieved using a total of 23 quadrature points, decreasing to less than 0.1 K d−1 for 32 quadrature points. It would be relatively straightforward to extend the method to include other gases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a previous paper, we discovered a surprising spectrally-invariant relationship in shortwave spectrometer observations taken by the Atmospheric Radiation Measurement (ARM) program. The relationship suggests that the shortwave spectrum near cloud edges can be determined by a linear combination of zenith radiance spectra of the cloudy and clear regions. Here, using radiative transfer simulations, we study the sensitivity of this relationship to the properties of aerosols and clouds, to the underlying surface type, and to the finite field-of-view (FOV) of the spectrometer. Overall, the relationship is mostly sensitive to cloud properties and has little sensitivity to other factors. At visible wavelengths, the relationship primarily depends on cloud optical depth regardless of cloud phase function, thermodynamic phase and drop size. At water-absorbing wavelengths, the slope of the relationship depends primarily on cloud optical depth; the intercept, by contrast, depends primarily on cloud absorbing and scattering properties, suggesting a new retrieval method for cloud drop effective radius. These results suggest that the spectrally-invariant relationship can be used to infer cloud properties near cloud edges even with insufficient or no knowledge about spectral surface albedo and aerosol properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rutile TiO2(110) surface has been doped with sub-monolayer metallic Cr, which oxidises and donates charge to specific surface Ti ions. X-Ray and ultra violet photoemission spectroscopy and first principles density functional theory with Hubbard U are used to assign the oxidation states of Cr and surface Ti and we find that Cr2+ forms on bridging oxygen ions and a 5-fold coordinated surface Ti atom is reduced to Ti3+ and the Cr ions readily react with oxygen (to Cr3+), which leads to depletion of surface Ti3+ 3d electrons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A discharge-flow system, coupled to cavity-enhanced absorption spectroscopy (CEAS) detection systems for NO3 at lambda = 662 nm and NO2 at lambda = 404 nm, was used to investigate the kinetics of the reactions of NO3 with eight peroxy radicals at P similar to 5 Torr and T similar to 295 K. Values of the rate constants obtained were (k/10(-12) cm(3) molecule(-1) s(-1)): CH3O2 (1.1 +/- 0.5), C2H5O2 (2.3 +/- 0.7), CH2FO2 (1.4 +/- 0.9), CH2ClO2 (3.8(-2.6)(+1.4)), c-C5H9O2 (1.2(-0.5)(+1.1)), c-C6H11O2 (1.9 +/- 0.7), CF3O2 (0.62 +/- 0.17) and CF3CFO2CF3 (0.24 +/- 0.13). We explore possible relationships between k and the orbital energies of the reactants. We also provide a brief discussion of the potential impact of the reactions of NO3 with RO2 on the chemistry of the night-time atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thoughtful construction of molecular switches has led to a gamut of supramolecular systems that can be used in molecular electronics. These include molecules based on thienylethenes, spiropyrans, fulgides, dithienylphenanthrolines, and diazafluorenes. This article reviews the recent developments made in the synthesis and characterization of all these systems, thereby allowing a comparative study to validate the viability of these switchable molecules on a nanoscale. Also, the drawbacks of each class are demonstrated and, at the same time, the remedies for further improvisation are prescribed. We have made an honest attempt to present at? exhaustive account of all the different photochromic switches developed by us hitherto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photochromic nitrospiropyrans substituted with 2,2'-bipyridine (bpy), [Ru(bpy)(3)](2+), and [Os(bpy)(3)](2+) groups were synthesized, and their photophysical, photochemical, and redox properties investigated. Substitution of the spiropyran with the metal complex moiety results in strongly decreased efficiency of the ring-opening process as a result of energy transfer from the excited spiropyran to the metal center. The lowest excited triplet state of the spiropyran in its open merocyanine form is lower in energy than the excited triplet MLCT level of the [Ru(bpy)(3)](2+) moiety but higher in energy than for [Os(bpy)(3)](2+), resulting in energy transfer from the excited ruthenium center to the spiropyran but inversely in the osmium case. The open merocyanine form reduces and oxidizes electrochemically more easily than the closed nitrospiropyran. Like photoexcitation, electrochemical activation also causes opening of the spiropyran ring by first reducing the closed form and subsequently reoxidizing the corresponding radical anion in two well-resolved anodic steps. Interestingly, the substitution of the spiropyran with a Ru or Os metal center does not affect the efficiency of this electrochemically induced ring-opening process, different from the photochemical path.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One-electron oxidation of 3,6-diphenyl-1,2-dithiin yields the corresponding radical cation. The product is stable at low temperatures and can be distinguished by a triplet EPR signal. Cyclic voltammetric, UV-vis spectroelectrochemical, and DFT studies were performed to elucidate its molecular structure and electronic properties. Time-dependent DFT calculations reproduce appreciably well the UV-vis spectral changes observed during the oxidation. The results reveal a moderately twisted structure of the 1,2-dithiin heterocycle in the radical cation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to build up a multicomponent system able to perform useful light-induced functions, a dithienylethene-bridged heterodinuclear metal complex (Ru/Os) has been prepared. The compound was characterized and its photophysical properties studied in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bonding, photochemical and electrochemical properties of the clusters [Ru-3(CO)(8)(mu-CO)(2)(alpha-diimine)] (alpha-diimine=2,2'-bipyridine (1), 4,4'-dimethyl-2,2'-bipyridine (2) and 2,2'-bipyrimidine (3)) are strongly influenced by the presence of bridging carbonyl ligands. Irradiation at 471 nm initially results in the population of a sigma(Ru-3)pi*(alpha-diimine) excited state. From this state, fast decay takes place to the optically hardly directly accessible pi(Ru/mu-CO) pi*(alpha-diimine) lowest excited state. These assignments agree with theoretical (TD-DFT) results, resonance Raman and picosecond time-resolved infrared spectra. The involvement of the bridging carbonyl ligands in the electron transfer increases the energetic barrier for the formation of open-structure photoproducts such as biradicals and zwitterions. Zwitterions were therefore only obtained in strongly coordinating media such as pyridine at 250 K. The bridging carbonyl ligands also stabilize the radical anions produced upon one-electron reduction of the clusters [Ru-3(CO)(8)(mu-CO)(2)(alpha-diimine)] and observed with cyclic voltammetry, EPR and IR spectroelectrochemistry (for alpha-diimine=2,2'-bipyrimidine). In contrast, open-triangle intermediates formed along the reduction path to [Ru(CO)(2)(alpha-diimine)](n) and [Ru-2(CO)(8)](2-) are more reactive than their triosmium analogues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stepwise electrochemical reduction of the complex fac-[Mn(Br)(CO)(3)(tmbp)] (tmbp = 4,4',5,5'-tetramethyl-2,2'-biphosphinine) produces the dimer [Mn(CO)(3)(tmbp)](2) and the five-coordinate anion [Mn(CO)(3)(tmbp)](-). All three members of the redox series have been characterized by single-crystal X-ray diffraction. The crystallographic data provide valuable insight into the localization of the added electrons on the (carbonyl)manganese and tmbp centers. In particular, the formulation of the two-electron-reduced anion as [Mn-0(CO)(3)(tmbp(-))](-) also agrees with the analysis of its IR nu(CO) wavenumbers and with the results of density functional theoretical (DFT) MO calculations on this compound. The strongly delocalized pi-bonding in the anion stabilizes its five-coordinate geometry and results in the appearance of several mixed Mn-to-tmbp charge-transfer/IL(tmbp) transitions in the near-UV-vis spectral region. A thorough voltammetric and UV-vis/IR spectroelectrochemical study of the reduction path provided evidence for a direct formation of [Mn(CO)(3)(tmbp)](-) via a two-electron ECE mechanism involving the [Mn(CO)(3)(tmbp)](.) radical transient. At ambient temperature [Mn(CO)(3)(tmbp)](-) reacts rapidly with nonreduced fac-[Mn(Br)(CO)(3)(tmbp)] to produce [Mn(CO)(3)(tmbp)](2). Comparison with the analogous 2,2'-bipyridine complexes has revealed striking similarity in the bonding properties and reactivity, despite the stronger pi-acceptor character of the tmbp ligand.