222 resultados para Pulci, Luigi, 1432-1484.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we systematically compare a wide range of observational and numerical precipitation datasets for Central Asia. Data considered include two re-analyses, three datasets based on direct observations, and the output of a regional climate model simulation driven by a global re-analysis. These are validated and intercompared with respect to their ability to represent the Central Asian precipitation climate. In each of the datasets, we consider the mean spatial distribution and the seasonal cycle of precipitation, the amplitude of interannual variability, the representation of individual yearly anomalies, the precipitation sensitivity (i.e. the response to wet and dry conditions), and the temporal homogeneity of precipitation. Additionally, we carried out part of these analyses for datasets available in real time. The mutual agreement between the observations is used as an indication of how far these data can be used for validating precipitation data from other sources. In particular, we show that the observations usually agree qualitatively on anomalies in individual years while it is not always possible to use them for the quantitative validation of the amplitude of interannual variability. The regional climate model is capable of improving the spatial distribution of precipitation. At the same time, it strongly underestimates summer precipitation and its variability, while interannual variations are well represented during the other seasons, in particular in the Central Asian mountains during winter and spring

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Internal bacterial communities of synanthropic mites Acarus siro, Dermatophagoides farinae, Lepidoglyphus destructor, and Tyrophagus putrescentiae (Acari: Astigmata) were analyzed by culturing and culture-independent approaches from specimens obtained from laboratory colonies. Homogenates of surface-sterilized mites were used for cultivation on non-selective agar and DNA extraction. Isolated bacteria were identified by sequencing of the 16S rRNA gene. PCR amplified 16S rRNA genes were analyzed by terminal restriction fragment length polymorphism analysis (T-RFLP) and cloning sequencing. Fluorescence in situ hybridization using universal bacterial probes was used for direct bacterial localization. T-RFLP analysis of 16S rRNA gene revealed distinct species-specific bacterial communities. The results were further confirmed by cloning and sequencing (284 clones). L. destructor and D. farinae showed more diverse communities then A. siro and T. putrescentiae. In the cultivated part of the community, the mean CFUs from four mite species ranged from 5.2 × 102 to 1.4 × 103 per mite. D. farinae had significantly higher CFUs than the other species. Bacteria were located in the digestive and reproductive tract, parenchymatical tissue, and in bacteriocytes. Among the clones, Bartonella-like bacteria occurring in A. siro and T. putresecentiae represented a distinct group related to Bartonellaceae and to Bartonella-like symbionts of ants. The clones of high similarity to Xenorhabdus cabanillasii were found in L. destructor and D. farinae, and one clone related to Photorhabdus temperata in A. siro. Members of Sphingobacteriales cloned from D. farinae and A. siro clustered with the sequences of “Candidatus Cardinium hertigii” and as a separate novel cluster.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the response of the South Asian monsoon (SAM) system to global climate change is an interesting scientific problem that has enormous implications from the societal viewpoint. While the CMIP3 projections of future changes in monsoon precipitation used in the IPCC AR4 show major uncertainties, there is a growing recognition that the rapid increase of moisture in a warming climate can potentially enhance the stability of the large-scale tropical circulations. In this work, the authors have examined the stability of the SAM circulation based on diagnostic analysis of climate datasets over the past half century; and addressed the issue of likely future changes in the SAM in response to global warming using simulations from an ultrahigh resolution (20 km) global climate model. Additional sensitivity experiments using a simplified atmospheric model have been presented to supplement the overall findings. The results here suggest that the intensity of the boreal summer monsoon overturning circulation and the associated southwesterly monsoon flow have significantly weakened during the past 50-years. The weakening trend of the monsoon circulation is further corroborated by a significant decrease in the frequency of moderate-to-heavy monsoon rainfall days and upward vertical velocities particularly over the narrow mountain ranges of the Western Ghats. Based on simulations from the 20-km ultra high-resolution model, it is argued that a stabilization (weakening) of the summer monsoon Hadley-type circulation in response to global warming can potentially lead to a weakened large-scale monsoon flow thereby resulting in weaker vertical velocities and reduced orographic precipitation over the narrow Western Ghat mountains by the end of the twenty-first century. Supplementary experiments using a simplified atmospheric model indicate a high sensitivity of the large-scale monsoon circulation to atmospheric stability in comparison with the effects of condensational heating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Asian monsoon system, including the western North Pacific (WNP), East Asian, and Indian monsoons, dominates the climate of the Asia-Indian Ocean-Pacific region, and plays a significant role in the global hydrological and energy cycles. The prediction of monsoons and associated climate features is a major challenge in seasonal time scale climate forecast. In this study, a comprehensive assessment of the interannual predictability of the WNP summer climate has been performed using the 1-month lead retrospective forecasts (hindcasts) of five state-of-the-art coupled models from ENSEMBLES for the period of 1960–2005. Spatial distribution of the temporal correlation coefficients shows that the interannual variation of precipitation is well predicted around the Maritime Continent and east of the Philippines. The high skills for the lower-tropospheric circulation and sea surface temperature (SST) spread over almost the whole WNP. These results indicate that the models in general successfully predict the interannual variation of the WNP summer climate. Two typical indices, the WNP summer precipitation index and the WNP lower-tropospheric circulation index (WNPMI), have been used to quantify the forecast skill. The correlation coefficient between five models’ multi-model ensemble (MME) mean prediction and observations for the WNP summer precipitation index reaches 0.66 during 1979–2005 while it is 0.68 for the WNPMI during 1960–2005. The WNPMI-regressed anomalies of lower-tropospheric winds, SSTs and precipitation are similar between observations and MME. Further analysis suggests that prediction reliability of the WNP summer climate mainly arises from the atmosphere–ocean interaction over the tropical Indian and the tropical Pacific Ocean, implying that continuing improvement in the representation of the air–sea interaction over these regions in CGCMs is a key for long-lead seasonal forecast over the WNP and East Asia. On the other hand, the prediction of the WNP summer climate anomalies exhibits a remarkable spread resulted from uncertainty in initial conditions. The summer anomalies related to the prediction spread, including the lower-tropospheric circulation, SST and precipitation anomalies, show a Pacific-Japan or East Asia-Pacific pattern in the meridional direction over the WNP. Our further investigations suggest that the WNPMI prediction spread arises mainly from the internal dynamics in air–sea interaction over the WNP and Indian Ocean, since the local relationships among the anomalous SST, circulation, and precipitation associated with the spread are similar to those associated with the interannual variation of the WNPMI in both observations and MME. However, the magnitudes of these anomalies related to the spread are weaker, ranging from one third to a half of those anomalies associated with the interannual variation of the WNPMI in MME over the tropical Indian Ocean and subtropical WNP. These results further support that the improvement in the representation of the air–sea interaction over the tropical Indian Ocean and subtropical WNP in CGCMs is a key for reducing the prediction spread and for improving the long-lead seasonal forecast over the WNP and East Asia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmosphere–ocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50–70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase

Relevância:

10.00% 10.00%

Publicador:

Resumo:

“Le calunnie etniche nella lingua italiana” (“Ethnic slurs in the Italian language”) is a very long chapter (c. 35.000 words) included in the second volume (pp. 513-587) of the multi-volume La cultura italiana, published by UTET in 2009-2010. (http://cultura.utet.it/cultura/catalogo/details.jsp?id=2076). La cultura italiana is an innovative multidisciplinary 12 volume (8.000 pages) work directed by the internationally acclaimed scientist Luigi Cavalli Sforza (http://en.wikipedia.org/wiki/Luigi_Luca_Cavalli-Sforza); each volume has been coordinated and edited by a very prominent Italian scholar, and every contribution has been written by academics with national and international reputations. The second volume of La cultura italiana has been coordinated by Professor Gian Luigi Beccaria, and is entirely devoted to language (“Lingue e linguaggi”). “Le calunnie etniche” brings together, for the first time in Italy, methodological issues and case studies on ethnic slurs in Italian and Italian dialects, and it particularly sheds new light on the semantic field of zingaro (gypsy), highlighting both the historical construction of the label, through the analysis of a huge amount of sources, and its social and political implication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Variations in the Atlantic Meridional Overturning Circulation (MOC) exert an important influence on climate, particularly on decadal time scales. Simulation of the MOC in coupled climate models is compromised, to a degree that is unknown, by their lack of fidelity in resolving some of the key processes involved. There is an overarching need to increase the resolution and fidelity of climate models, but also to assess how increases in resolution influence the simulation of key phenomena such as the MOC. In this study we investigate the impact of significantly increasing the (ocean and atmosphere) resolution of a coupled climate model on the simulation of MOC variability by comparing high and low resolution versions of the same model. In both versions, decadal variability of the MOC is closely linked to density anomalies that propagate from the Labrador Sea southward along the deep western boundary. We demonstrate that the MOC adjustment proceeds more rapidly in the higher resolution model due the increased speed of western boundary waves. However, the response of the Atlantic Sea Surface Temperatures (SSTs) to MOC variations is relatively robust - in pattern if not in magnitude - across the two resolutions. The MOC also excites a coupled ocean-atmosphere response in the tropical Atlantic in both model versions. In the higher resolution model, but not the lower resolution model, there is evidence of a significant response in the extratropical atmosphere over the North Atlantic 6 years after a maximum in the MOC. In both models there is evidence of a weak negative feedback on deep density anomalies in the Labrador Sea, and hence on the MOC (with a time scale of approximately ten years). Our results highlight the need for further work to understand the decadal variability of the MOC and its simulation in climate models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Huntington’s disease (HD) is a fatal, neurodegenerative disease for which there is no known cure. Proxy evaluation is relevant for HD as its manifestation might limit the ability of persons to report their health-related quality of life (HrQoL). This study explored patient–proxy ratings of HrQoL of persons at different stages of HD, and examined factors that may affect proxy ratings. A total of 105 patient–proxy pairs completed the Huntington’s disease health-related quality of life questionnaire (HDQoL) and other established HrQoL measures (EQ-5D and SF-12v2). Proxy–patient agreement was assessed in terms of absolute level (mean ratings) and intraclass correlation. Proxies’ ratings were at a similar level to patients’ self-ratings on an overall Summary Score and on most of the six Specific Scales of the HDQoL. On the Specific Hopes and Worries Scale, proxies on average rated HrQoL as better than patients’ self-ratings, while on both the Specific Cognitive Scale and Specific Physical and Functional Scale proxies tended to rate HrQoL more poorly than patients themselves. The patient’s disease stage and mental wellbeing (SF-12 Mental Component scale) were the two factors that primarily affected proxy assessment. Proxy scores were strongly correlated with patients’ self-ratings of HrQoL, on the Summary Scale and all Specific Scales. The patient–proxy correlation was lower for patients at moderate stages of HD compared to patients at early and advanced stages. The proxy report version of the HDQoL is a useful complementary tool to self-assessment, and a promising alternative when individual patients with advanced HD are unable to self-report.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tropical Cyclone (TC) is normally not studied at the individual level with Global Climate Models (GCMs), because the coarse grid spacing is often deemed insufficient for a realistic representation of the basic underlying processes. GCMs are indeed routinely deployed at low resolution, in order to enable sufficiently long integrations, which means that only large-scale TC proxies are diagnosed. A new class of GCMs is emerging, however, which is capable of simulating TC-type vortexes by retaining a horizontal resolution similar to that of operational NWP GCMs; their integration on the latest supercomputers enables the completion of long-term integrations. The UK-Japan Climate Collaboration and the UK-HiGEM projects have developed climate GCMs which can be run routinely for decades (with grid spacing of 60 km) or centuries (with grid spacing of 90 km); when coupled to the ocean GCM, a mesh of 1/3 degrees provides eddy-permitting resolution. The 90 km resolution model has been developed entirely by the UK-HiGEM consortium (together with its 1/3 degree ocean component); the 60 km atmospheric GCM has been developed by UJCC, in collaboration with the Met Office Hadley Centre.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is currently an increased interest of Government and Industry in the UK, as well as at the European Community level and International Agencies (i.e. Department of Energy, American International Energy Agency), to improve the performance and uptake of Ground Coupled Heat Pumps (GCHP), in order to meet the 2020 renewable energy target. A sound knowledge base is required to help inform the Government Agencies and advisory bodies; detailed site studies providing reliable data for model verification have an important role to play in this. In this study we summarise the effect of heat extraction by a horizontal ground heat exchanger (installed at 1 m depth) on the soil physical environment (between 0 and 1 m depth) for a site in the south of the UK. Our results show that the slinky influences the surrounding soil by significantly decreasing soil temperatures. Furthermore, soil moisture contents were lower for the GCHP soil profile, most likely due to temperature-gradient related soil moisture migration effects and a decreased hydraulic conductivity, the latter as a result of increased viscosity (caused by the lower temperatures for the GCHP soil profile). The effects also caused considerable differences in soil thermal properties. This is the first detailed mechanistic study conducted in the UK with the aim to understand the interactions between the soil, horizontal heat exchangers and the aboveground environment. An increased understanding of these interactions will help to achieve an optimum and sustainable use of the soil heat resources in the future. The results of this study will help to calibrate and verify a simulation model that will provide UK-wide recommendations to improve future GCHP uptake and performance, while safeguarding the soil physical resources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of experiments are described that examine the sensitivity of the northern-hemisphere winter evolution to the equatorial quasi-biennial oscillation (QBO). The prime tool for the experiments is a stratosphere-mesosphere model. The model is integrated over many years with the modelled equatorial winds relaxed towards observed values in order to simulate a realistic QBO. In experiment A the equatorial winds are relaxed towards Singapore radiosonde observations in the height region 16-32 km. In contrast to previous modelling studies, the Holton-Tan relationship (warm/cold winters associated with easterly/westerly QBO winds in the lower stratosphere) is absent. However, in a second experiment (run B) in which the equatorial winds are relaxed towards rocketsonde data over the extended height range 16-58 km, a realistic Holton-Tan relationship is reproduced. A series of further studies are described that explore in more detail the sensitivity to various equatorial height regions and to the bottom-boundary forcing. The experiments suggest that the evolution of the northern-hemisphere winter circulation is sensitive to equatorial winds throughout the whole depth of the stratosphere and not just to the lower-stratospheric wind direction as previously assumed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study focuses on the mechanisms underlying water and heat transfer in upper soil layers, and their effects on soil physical prognostic variables and the individual components of the energy balance. The skill of the JULES (Joint UK Land Environment Simulator) land surface model (LSM) to simulate key soil variables, such as soil moisture content and surface temperature, and fluxes such as evaporation, is investigated. The Richards equation for soil water transfer, as used in most LSMs, was updated by incorporating isothermal and thermal water vapour transfer. The model was tested for three sites representative of semi-arid and temperate arid climates: the Jornada site (New Mexico, USA), Griffith site (Australia) and Audubon site (Arizona, USA). Water vapour flux was found to contribute significantly to the water and heat transfer in the upper soil layers. This was mainly due to isothermal vapour diffusion; thermal vapour flux also played a role at the Jornada site just after rainfall events. Inclusion of water vapour flux had an effect on the diurnal evolution of evaporation, soil moisture content and surface temperature. The incorporation of additional processes, such as water vapour flux among others, into LSMs may improve the coupling between the upper soil layers and the atmosphere, which in turn could increase the reliability of weather and climate predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper shows the robust non-existence of competitive equilibria even in a simple three period representative agent economy with dynamically inconsistent preferences. We distinguish between a sophisticated and naive representative agent. Even when underlying preferences are monotone and convex, at given prices, we show by example that the induced preference of the sophisticated representative agent over choices in first-period markets is both non-convex and satiated. Even allowing for negative prices, the market-clearing allocation is not contained in the convex hull of demand. Finally, with a naive representative agent, we show that perfect foresight is incompatible with market clearing and individual optimization at given prices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fascinating idea that tools become extensions of our body appears in artistic, literary, philosophical, and scientific works alike. In the last fifteen years, this idea has been re-framed into several related hypotheses, one of which states that tool use extends the neural representation of the multisensory space immediately surrounding the hands (variously termed peripersonal space, peri-hand space, peri-cutaneous space, action space, or near space). This and related hypotheses have been tested extensively in the cognitive neurosciences, with evidence from molecular, neurophysiological, neuroimaging, neuropsychological, and behavioural fields. Here, I briefly review the evidence for and against the hypothesis that tool use extends a neural representation of the space surrounding the hand, concentrating on neurophysiological, neuropsychological, and behavioural evidence. I then provide a re-analysis of data from six published and one unpublished experiments using the crossmodal congruency task to test this hypothesis. While the re-analysis broadly confirms the previously-reported finding that tool use does not literally extend peripersonal space, the overall effect-sizes are small and statistical power is low. I conclude by questioning whether the crossmodal congruency task can indeed be used to test the hypothesis that tool use modifies peripersonal space.