74 resultados para Public buildings -- Energy consumption
Resumo:
With the fast development of the Internet, wireless communications and semiconductor devices, home networking has received significant attention. Consumer products can collect and transmit various types of data in the home environment. Typical consumer sensors are often equipped with tiny, irreplaceable batteries and it therefore of the utmost importance to design energy efficient algorithms to prolong the home network lifetime and reduce devices going to landfill. Sink mobility is an important technique to improve home network performance including energy consumption, lifetime and end-to-end delay. Also, it can largely mitigate the hot spots near the sink node. The selection of optimal moving trajectory for sink node(s) is an NP-hard problem jointly optimizing routing algorithms with the mobile sink moving strategy is a significant and challenging research issue. The influence of multiple static sink nodes on energy consumption under different scale networks is first studied and an Energy-efficient Multi-sink Clustering Algorithm (EMCA) is proposed and tested. Then, the influence of mobile sink velocity, position and number on network performance is studied and a Mobile-sink based Energy-efficient Clustering Algorithm (MECA) is proposed. Simulation results validate the performance of the proposed two algorithms which can be deployed in a consumer home network environment.
Resumo:
Building assessment methods have become a popular research field since the early 1990s. An international tool which allows the assessment of buildings in all regions, taking into account differences in climates, topographies and cultures does not yet exist. This paper aims to demonstrate the importance of criteria and sub-criteria in developing a new potential building assessment method for Saudi Arabia. Recently, the awareness of sustainability has been increasing in developing countries due to high energy consumption, pollution and high carbon foot print. There is no debate that assessment criteria have an important role to identify the tool’s orientation. However, various aspects influence the criteria and sub-criteria of assessment tools such as environment, economic, social and cultural to mention but a few. The author provides an investigation on the most popular and globally used schemes: BREEAM, LEED, Green Star, CASBEE and Estidama in order to identify the effectiveness of the different aspects of the assessment criteria and the impacts of these criteria on the assessment results; that will provide a solid foundation to develop an effective sustainable assessment method for buildings in Saudi Arabia. Initial results of the investigation suggest that each country needs to develop its own assessment method in order to achieve desired results, while focusing upon the indigenous environmental, economic, social and cultural conditions. Keywords: Assessment methods, BREEAM, LEED, Green Star, CASBEE, Estidama, sustainability, sustainable buildings, Environment, Saudi Arabia.
Resumo:
Academic and industrial literature concerning the energy consumption of commercial kitchens is scarce. Electricity consumption data were collected from distribution board current transformers in a sample of fourteen UK public house restaurants. This was set up to identify patterns of appliance use as well as to assess the total energy consumption of these establishments. The electricity consumption in the selected commercial kitchens was significantly higher than current literature estimates. On average, 63% of the premises electricity consumption was attributed to the catering activity. Key appliances that contributed to the samples average electricity consumption were identified as refrigeration (70 kwh, 41%), fryers (11 kwh, 13%), combi-ovens (35 kwh, 12%) bain maries (27 kwh, 9%) and grills (37kwh, 12%). Behavioral factors and poor maintenance were identified as major contributors to excessive electricity usage with potential savings of 70% and 45% respectively. Initiatives are required to influence operator behavior, such as the expansion of mandatory energy labeling, improved feedback information and the use of behavior change campaigns. Strict maintenance protocols and more appropriate sizing of refrigeration would be of great benefit to energy reduction.
Resumo:
The large scale urban consumption of energy (LUCY) model simulates all components of anthropogenic heat flux (QF) from the global to individual city scale at 2.5 × 2.5 arc-minute resolution. This includes a database of different working patterns and public holidays, vehicle use and energy consumption in each country. The databases can be edited to include specific diurnal and seasonal vehicle and energy consumption patterns, local holidays and flows of people within a city. If better information about individual cities is available within this (open-source) database, then the accuracy of this model can only improve, to provide the community data from global-scale climate modelling or the individual city scale in the future. The results show that QF varied widely through the year, through the day, between countries and urban areas. An assessment of the heat emissions estimated revealed that they are reasonably close to those produced by a global model and a number of small-scale city models, so results from LUCY can be used with a degree of confidence. From LUCY, the global mean urban QF has a diurnal range of 0.7–3.6 W m−2, and is greater on weekdays than weekends. The heat release from building is the largest contributor (89–96%), to heat emissions globally. Differences between months are greatest in the middle of the day (up to 1 W m−2 at 1 pm). December to February, the coldest months in the Northern Hemisphere, have the highest heat emissions. July and August are at the higher end. The least QF is emitted in May. The highest individual grid cell heat fluxes in urban areas were located in New York (577), Paris (261.5), Tokyo (178), San Francisco (173.6), Vancouver (119) and London (106.7). Copyright © 2010 Royal Meteorological Society
Resumo:
Collectively small and medium sized enterprises (SMEs) are significant energy users although many are unregulated by existing policies due to their low carbon emissions. Carbon reduction is often not a priority but smart grids may create a new opportunity. A smart grid will give electricity suppliers a picture of real-time energy flows and the opportunity for consumers to receive financial incentives for engaging in demand side management. As well as creating incentives for local carbon reduction, engaging SMEs with smart grids has potential for contributing to wider grid decarbonisation. Modelling of buildings, business activities and technology solutions is needed to identify opportunities for carbon reduction. The diversity of the SME sector complicates strategy development. SMEs are active in almost every business area and occupy the full range of property types. This paper reviews previous modelling work, exposing valuable data on floor space and energy consumption associated with different business activities. Limitations are seen with the age of this data and an inability to distinguish SME energy use. By modelling SME energy use, electrical loads are identified which could be shifted on demand, in a smart network. Initial analysis of consumption, not constrained by existing policies, identifies heating and cooling in retail and commercial offices as having potential for demand response. Hot water in hotel and catering and retail sectors may also be significant because of the energy storage potential. Areas to consider for energy efficiency schemes are also indicated.
Resumo:
The growing energy consumption in the residential sector represents about 30% of global demand. This calls for Demand Side Management solutions propelling change in behaviors of end consumers, with the aim to reduce overall consumption as well as shift it to periods in which demand is lower and where the cost of generating energy is lower. Demand Side Management solutions require detailed knowledge about the patterns of energy consumption. The profile of electricity demand in the residential sector is highly correlated with the time of active occupancy of the dwellings; therefore in this study the occupancy patterns in Spanish properties was determined using the 2009–2010 Time Use Survey (TUS), conducted by the National Statistical Institute of Spain. The survey identifies three peaks in active occupancy, which coincide with morning, noon and evening. This information has been used to input into a stochastic model which generates active occupancy profiles of dwellings, with the aim to simulate domestic electricity consumption. TUS data were also used to identify which appliance-related activities could be considered for Demand Side Management solutions during the three peaks of occupancy.
Resumo:
In 2007, the world reached the unprecedented milestone of half of its people living in cities, and that proportion is projected to be 60% in 2030. The combined effect of global climate change and rapid urban growth, accompanied by economic and industrial development, will likely make city residents more vulnerable to a number of urban environmental problems, including extreme weather and climate conditions, sea-level rise, poor public health and air quality, atmospheric transport of accidental or intentional releases of toxic material, and limited water resources. One fundamental aspect of predicting the future risks and defining mitigation strategies is to understand the weather and regional climate affected by cities. For this reason, dozens of researchers from many disciplines and nations attended the Urban Weather and Climate Workshop.1 Twenty-five students from Chinese universities and institutes also took part. The presentations by the workshop's participants span a wide range of topics, from the interaction between the urban climate and energy consumption in climate-change environments to the impact of urban areas on storms and local circulations, and from the impact of urbanization on the hydrological cycle to air quality and weather prediction.
Resumo:
Academic and industrial literature concerning the energy use of commercial kitchens is scarce. Electricity consumption data were collected from distribution board current transformers in a sample of fourteen UK public house-restaurants. This was set up to identify patterns of appliance use as well as to assess the total energy consumption of these establishments. The electricity consumption in the selected commercial kitchens was significantly higher than current literature estimates. On average, 63% of the premises’ electricity consumption was attributed to the catering activity. Key appliances that contributed to the samples average daily electricity consumption of the kitchen were identified as refrigeration (70 kWh, 41%), fryers (11 kWh, 13%), combination ovens (35 kWh, 12%), bain maries (27 kWh, 9%) and grills (37 kWh, 12%). Behavioural factors and poor maintenance were identified as major contributors to excessive electricity usage with potential savings of 70% and 45% respectively. Initiatives are required to influence operator behaviour, such as the expansion of mandatory energy labelling, improved feedback information and the use of behaviour change campaigns. Strict maintenance protocols and more appropriate sizing of refrigeration would be of great benefit to energy reduction.
Resumo:
The domestic (residential) sector accounts for 30% of the world’s energy consumption hence plays a substantial role in energy management and CO2 emissions reduction efforts. Energy models have been generally developed to mitigate the impact of climate change and for the sustainable management and planning of energy resources. Although there are different models and model categories, they are generally categorised into top down and bottom up. Significantly, top down models are based on aggregated data while bottom up models are based on disaggregated data. These approaches create fundamental differences which have been the centre of debate since the 1970’s. These differences have led to noticeable discrepancies in results which have led to authors arguing that the models are of a more complementary than a substituting nature. As a result developing methods suggest that there is the need to integrate either the two models (bottom up − top down) or aspects that combine two bottom up models or an upgrade of top down models to compensate for the documented limitations. Diverse schools of thought argue in favour of these integrations – currently known as hybrid models. In this paper complexities of identifying country specific and/or generic domestic energy models and their applications in different countries have been critically reviewed. Predominantly from the review it is evident that most of these methods have been adapted and used in the ‘western world’ with practically no such applications in Africa.
Resumo:
It is increasingly important to know about when energy is used in the home, at work and on the move. Issues of time and timing have not featured strongly in energy policy analysis and in modelling, much of which has focused on estimating and reducing total average annual demand per capita. If smarter ways of balancing supply and demand are to take hold, and if we are to make better use of decarbonised forms of supply, it is essential to understand and intervene in patterns of societal synchronisation. This calls for detailed knowledge of when, and on what occasions many people engage in the same activities at the same time, of how such patterns are changing, and of how might they be shaped. In addition, the impact of smart meters and controls partly depends on whether there is, in fact scope for shifting the timing of what people do, and for changing the rhythm of the day. Is the scheduling of daily life an arena that policy can influence, and if so how? The DEMAND Centre has been linking time use, energy consumption and travel diary data as a means of addressing these questions and in this working paper we present some of the issues and results arising from that exercise.
Resumo:
Wireless Body Area Networks (WBANs) consist of a number of miniaturized wearable or implanted sensor nodes that are employed to monitor vital parameters of a patient over long duration of time. These sensors capture physiological data and wirelessly transfer the collected data to a local base station in order to be further processed. Almost all of these body sensors are expected to have low data-rate and to run on a battery. Since recharging or replacing the battery is not a simple task specifically in the case of implanted devices such as pacemakers, extending the lifetime of sensor nodes in WBANs is one of the greatest challenges. To achieve this goal, WBAN systems employ low-power communication transceivers and low duty cycle Medium Access Control (MAC) protocols. Although, currently used MAC protocols are able to reduce the energy consumption of devices for transmission and reception, yet they are still unable to offer an ultimate energy self-sustaining solution for low-power MAC protocols. This paper proposes to utilize energy harvesting technologies in low-power MAC protocols. This novel approach can further reduce energy consumption of devices in WBAN systems.
Resumo:
Data on electricity consumption patterns relating to different end uses in domestic houses in Botswana is virtually non-existent, despite the fact that the total electricity consumption patterns are available. This can be attributed to the lack of measured and quantified data and in other instances the lack of modern technology to perform such investigations. This paper presents findings from initial studies that are envisaged to bridge the gap. Electricity consumption patterns of 275 domestic households in Gaborone (the capital city of Botswana) have been studied. This was carried out through a questionnaire survey and electricity measurements. Households were categorized based on the number of people occupying the house. From the study, it was evident that the number of people influences the amount of energy a household use although this cannot be treated as an independent factor when assessing energy use. The study also indicated that heating, cooling and domestic hot water (DHW) account for over 30% of energy used in the home. This is worth considering in energy consumption reduction measures. Due to a small sample size, it would not be wise to draw sweeping conclusions from the analysis of this paper or to make statements that would be aimed at influencing policies. However, the results presented forms a formidable base for further research, which is currently on going.
Resumo:
In order to exploit the passive energy potential of the building envelope, it is important to provide a right combination of insulation thickness, heat capacity and night-time ventilation. In this paper, this issue will be tackled with reference to an historic building in Catania (Southern Italy). The building was built at the end of the XIX century, and its opaque envelope is entirely made with lava stones, which is typical of traditional architecture in this area. Starting from the current configuration of the building, many hypotheses for refurbishment are considered, combined with different strategies for passive cooling, such as night-time ventilation, use of shading devices and adoption of highly-reflective coatings. The effectiveness of each solution in terms of summer thermal comfort is evaluated through dynamic thermal simulations carried out with EnergyPlus. The results show the synergic effect of these strategies, as well as their individual impact, and allow to draw some general conclusions about the behaviour of heavyweight buildings under moderately hot weather conditions.
Resumo:
In this paper, a power management strategy (PMS) has been developed for the control of energy storage in a system subjected to loads of random duration. The PMS minimises the costs associated with the energy consumption of specific systems powered by a primary energy source and equipped with energy storage, under the assumption that the statistical distribution of load durations is known. By including the variability of the load in the cost function, it was possible to define the optimality criteria for the power flow of the storage. Numerical calculations have been performed obtaining the control strategies associated with the global minimum in energy costs, for a wide range of initial conditions of the system. The results of the calculations have been tested on a MATLAB/Simulink model of a rubber tyre gantry (RTG) crane equipped with a flywheel energy storage system (FESS) and subjected to a test cycle, which corresponds to the real operation of a crane in the Port of Felixstowe. The results of the model show increased energy savings and reduced peak power demand with respect to existing control strategies, indicating considerable potential savings for port operators in terms of energy and maintenance costs.