70 resultados para Pseudomonotone Generalized Directional Derivative
Resumo:
BACKGROUND: Obesity is associated with vitamin D deficiency, and both are areas of active public health concern. We explored the causality and direction of the relationship between body mass index (BMI) and 25-hydroxyvitamin D [25(OH)D] using genetic markers as instrumental variables (IVs) in bi-directional Mendelian randomization (MR) analysis. METHODS AND FINDINGS: We used information from 21 adult cohorts (up to 42,024 participants) with 12 BMI-related SNPs (combined in an allelic score) to produce an instrument for BMI and four SNPs associated with 25(OH)D (combined in two allelic scores, separately for genes encoding its synthesis or metabolism) as an instrument for vitamin D. Regression estimates for the IVs (allele scores) were generated within-study and pooled by meta-analysis to generate summary effects. Associations between vitamin D scores and BMI were confirmed in the Genetic Investigation of Anthropometric Traits (GIANT) consortium (n = 123,864). Each 1 kg/m(2) higher BMI was associated with 1.15% lower 25(OH)D (p = 6.52×10⁻²⁷). The BMI allele score was associated both with BMI (p = 6.30×10⁻⁶²) and 25(OH)D (-0.06% [95% CI -0.10 to -0.02], p = 0.004) in the cohorts that underwent meta-analysis. The two vitamin D allele scores were strongly associated with 25(OH)D (p≤8.07×10⁻⁵⁷ for both scores) but not with BMI (synthesis score, p = 0.88; metabolism score, p = 0.08) in the meta-analysis. A 10% higher genetically instrumented BMI was associated with 4.2% lower 25(OH)D concentrations (IV ratio: -4.2 [95% CI -7.1 to -1.3], p = 0.005). No association was seen for genetically instrumented 25(OH)D with BMI, a finding that was confirmed using data from the GIANT consortium (p≥0.57 for both vitamin D scores). CONCLUSIONS: On the basis of a bi-directional genetic approach that limits confounding, our study suggests that a higher BMI leads to lower 25(OH)D, while any effects of lower 25(OH)D increasing BMI are likely to be small. Population level interventions to reduce BMI are expected to decrease the prevalence of vitamin D deficiency.
Resumo:
Semi-analytical expressions for the momentum flux associated with orographic internal gravity waves, and closed analytical expressions for its divergence, are derived for inviscid, stationary, hydrostatic, directionally-sheared flow over mountains with an elliptical horizontal cross-section. These calculations, obtained using linear theory conjugated with a third-order WKB approximation, are valid for relatively slowly-varying, but otherwise generic wind profiles, and given in a form that is straightforward to implement in drag parametrization schemes. When normalized by the surface drag in the absence of shear, a quantity that is calculated routinely in existing drag parametrizations, the momentum flux becomes independent of the detailed shape of the orography. Unlike linear theory in the Ri → ∞ limit, the present calculations account for shear-induced amplification or reduction of the surface drag, and partial absorption of the wave momentum flux at critical levels. Profiles of the normalized momentum fluxes obtained using this model and a linear numerical model without the WKB approximation are evaluated and compared for two idealized wind profiles with directional shear, for different Richardson numbers (Ri). Agreement is found to be excellent for the first wind profile (where one of the wind components varies linearly) down to Ri = 0.5, while not so satisfactory, but still showing a large improvement relative to the Ri → ∞ limit, for the second wind profile (where the wind turns with height at a constant rate keeping a constant magnitude). These results are complementary, in the Ri > O(1) parameter range, to Broad’s generalization of the Eliassen–Palm theorem to 3D flow. They should contribute to improve drag parametrizations used in global weather and climate prediction models.
Resumo:
In order to examine metacognitive accuracy (i.e., the relationship between metacognitive judgment and memory performance), researchers often rely on by-participant analysis, where metacognitive accuracy (e.g., resolution, as measured by the gamma coefficient or signal detection measures) is computed for each participant and the computed values are entered into group-level statistical tests such as the t-test. In the current work, we argue that the by-participant analysis, regardless of the accuracy measurements used, would produce a substantial inflation of Type-1 error rates, when a random item effect is present. A mixed-effects model is proposed as a way to effectively address the issue, and our simulation studies examining Type-1 error rates indeed showed superior performance of mixed-effects model analysis as compared to the conventional by-participant analysis. We also present real data applications to illustrate further strengths of mixed-effects model analysis. Our findings imply that caution is needed when using the by-participant analysis, and recommend the mixed-effects model analysis.
Resumo:
We consider a generic basic semi-algebraic subset S of the space of generalized functions, that is a set given by (not necessarily countably many) polynomial constraints. We derive necessary and sufficient conditions for an infinite sequence of generalized functions to be realizable on S, namely to be the moment sequence of a finite measure concentrated on S. Our approach combines the classical results about the moment problem on nuclear spaces with the techniques recently developed to treat the moment problem on basic semi-algebraic sets of Rd. In this way, we determine realizability conditions that can be more easily verified than the well-known Haviland type conditions. Our result completely characterizes the support of the realizing measure in terms of its moments. As concrete examples of semi-algebraic sets of generalized functions, we consider the set of all Radon measures and the set of all the measures having bounded Radon–Nikodym density w.r.t. the Lebesgue measure.
Resumo:
This letter presents an accurate delay analysis in prioritised wireless sensor networks (WSN). The analysis is an enhancement of the existing analysis proposed by Choobkar and Dilmaghani, which is only applicable to the case where the lower priority nodes always have packets to send in the empty slots of the higher priority node. The proposed analysis is applicable for any pattern of packet arrival, which includes the general case where the lower priority nodes may or may not have packets to send in the empty slots of the higher priority nodes. Evaluation of both analyses showed that the proposed delay analysis has better accuracy over the full range of loads and provides an excellent match to simulation results.
Resumo:
A generalization of Arakawa and Schubert's convective quasi-equilibrium principle is presented for a closure formulation of mass-flux convection parameterization. The original principle is based on the budget of the cloud work function. This principle is generalized by considering the budget for a vertical integral of an arbitrary convection-related quantity. The closure formulation includes Arakawa and Schubert's quasi-equilibrium, as well as both CAPE and moisture closures as special cases. The formulation also includes new possibilities for considering vertical integrals that are dependent on convective-scale variables, such as the moisture within convection. The generalized convective quasi-equilibrium is defined by a balance between large-scale forcing and convective response for a given vertically-integrated quantity. The latter takes the form of a convolution of a kernel matrix and a mass-flux spectrum, as in the original convective quasi-equilibrium. The kernel reduces to a scalar when either a bulk formulation is adopted, or only large-scale variables are considered within the vertical integral. Various physical implications of the generalized closure are discussed. These include the possibility that precipitation might be considered as a potentially-significant contribution to the large-scale forcing. Two dicta are proposed as guiding physical principles for the specifying a suitable vertically-integrated quantity.
Resumo:
An important challenge for conservation today is to understand the endangerment process and identify any generalized patterns in how threats occur and aggregate across taxa. Here we use a global database describing main current external threats in mammals to evaluate the prevalence of distinct threatening processes, primarily of anthropogenic origin, and to identify generalized drivers of extinction and their association with vulnerability status and intrinsic species' traits. We detect several primary threat combinations that are generally associated with distinct species. In particular, large and widely distributed mammals are affected by combinations of direct exploitation and threats associated with increasing landscape modification that go from logging to intense human land-use. Meanwhile, small, narrowly distributed species are affected by intensifying levels of landscape modification but are not directly exploited. In general more vulnerable species are affected by a greater number of threats, suggesting increased extinction risk is associated with the accumulation of external threats. Overall, our findings show that endangerment in mammals is strongly associated with increasing habitat loss and degradation caused by human land-use intensification. For large and widely distributed mammals there is the additional risk of being hunted.
Resumo:
In this paper we characterize the Schatten p class membership of Toeplitz operators with positive measure symbols acting on generalized Fock spaces for the full range p>0.
Resumo:
Prior research has documented negative, concurrent relations between internalizing symptomatology and academic achievement among adolescents. The present study provided the first rigorous, longitudinal examination of the bi-directional, prospective relations between adolescent internalizing symptomatology and academic achievement. One hundred and thirty adolescents reported depression and anxiety annually from 6th through 10th grades, and GPA records were obtained annually from schools. Results showed that a) high depression and anxiety at the beginning of a school year predicted lower GPA during that school year, and b) low GPA in any school year predicted higher depression and anxiety at the beginning of the following school year. These findings underscore the tight link between adolescent internalizing symptomatology and academic achievement.
Resumo:
In recent years, scholars have devoted increased attention to the agency of small states in International Relations. However, the conventional wisdom remains that while not completely powerful, small states are unlikely to achieve much of significance when faced by great power opposition. This argument, however, implicitly rests on resource-based and compulsory understandings of power. This article explores the implicit connections between the concept of "small state" and diverse concepts of power, asking how we should understand these states' attempts to gain influence and achieve their international political objectives. By connecting the study of small states with additional understandings of power, the article elaborates the broader avenues for influence that are open to many states but are particularly relevant for small states. The article argues that small states' power can be best understood as originating in three categories: “derivative,” collective, and particular-intrinsic. Derivative power, coined by Michael Handel, relies upon the relationship with a great power. Collective power involves building coalitions of supportive states, often through institutions. Particular-intrinsic power relies on the assets of the small state trying to do the influencing. Small states specialize in the bases and means of these types of power, which may have unconventional compulsory, institutional, structural, and productive aspects.