65 resultados para Propellers, Aerial.
Resumo:
The evergreen Quercus ilex L. is one of the most common trees in Italian urban environments and is considered effective in the uptake of particulate and gaseous atmospheric pollutants. However, the few available estimates on O3 and NO2 removal by urban Q. ilex originate from model-based studies (which indicate NO2/O3 removal capacity of Q. ilex) and not from direct measurements of air pollutant concentrations. Thus, in the urban area of Siena (central Italy) we began long-term monitoring of O3/NO2 concentrations using passive samplers at a distance of 1, 5, 10 m from a busy road, under the canopies of Q. ilex and in a nearby open-field. Measurements performed in the period June 2011-October 2013 showed always a greater decrease of NO2 concentrations under the Q. ilex canopy than in the open-field transect. Conversely, a decrease of average O3 concentrations under the tree canopy was found only in autumn after the typical Mediterranean post-summer rainfalls. Our results indicate that interactions between O3/NO2 concentrations and trees in Mediterranean urban ecosystems are affected by temporal variations in climatic conditions. We argue therefore that the direct measurement of atmospheric pollutant concentrations should be chosen to describe local changes of aerial pollution.
Resumo:
The effect of infestation by the aphid Metopolophium dirhodum on the concentration and mass partitioning of Cd and Zn was studied in wheat plants. Results show that infestation did not affect the concentration of either metal in the roots or shoots of wheat, but elevated concentrations in the ears. This appeared to result from the concentration of metal in the smaller ear mass of infested plants. Infestation did not significantly affect the mass partitioning of either metal in any part of the plant, some 10% of both metals being allocated to the roots. However, the two metals contrasted in their partitioning in the aerial parts of the plant, with ca. 60% of Cd mass partitioned in the shoots and ca. 67% of Zn mass partitioned in the ears. The possible effects of infestation on the transfer of Cd and Zn from the soil to cereal aphids are discussed.
Resumo:
An ability to quantify the reliability of probabilistic flood inundation predictions is a requirement not only for guiding model development but also for their successful application. Probabilistic flood inundation predictions are usually produced by choosing a method of weighting the model parameter space, but previous study suggests that this choice leads to clear differences in inundation probabilities. This study aims to address the evaluation of the reliability of these probabilistic predictions. However, a lack of an adequate number of observations of flood inundation for a catchment limits the application of conventional methods of evaluating predictive reliability. Consequently, attempts have been made to assess the reliability of probabilistic predictions using multiple observations from a single flood event. Here, a LISFLOOD-FP hydraulic model of an extreme (>1 in 1000 years) flood event in Cockermouth, UK, is constructed and calibrated using multiple performance measures from both peak flood wrack mark data and aerial photography captured post-peak. These measures are used in weighting the parameter space to produce multiple probabilistic predictions for the event. Two methods of assessing the reliability of these probabilistic predictions using limited observations are utilized; an existing method assessing the binary pattern of flooding, and a method developed in this paper to assess predictions of water surface elevation. This study finds that the water surface elevation method has both a better diagnostic and discriminatory ability, but this result is likely to be sensitive to the unknown uncertainties in the upstream boundary condition
Resumo:
This paper examines a hydrographic response to the wind‐driven coastal polynya activity over the southeastern Laptev Sea shelf for April–May 2008, using a combination of Environmental Satellite (Envisat) advanced synthetic aperture radar (ASAR) and TerraSAR‐X satellite imagery, aerial photography, meteorological data, and SBE‐37 salinity‐temperature‐depth and acoustic Doppler current profiler land‐fast ice edgemoored instruments. When ASAR observed the strongest end‐of‐April polynya event with frazil ice formation, the moored instruments showed maximal acoustical scattering within the surface mixed layer, and the seawater temperatures were either at or 0.02°C below freezing. We also find evidence of the persistent horizontal temperature and salinity gradients across the fast ice edge to have the signature of geostrophic flow adjustment as predicted by polynya models.
Resumo:
Horticulture may be defined as the intensive cultivation and harvesting of plants for financial, environmental and social profit. Evidence for the occurrence of climate change more generally and reasons why this process is happening with such rapidity are discussed. These changes are then considered in terms of the effects which might alter the options for worldwide intensive horticultural cultivation of plants and its interactions with other organisms. Potentially changing climates will have considerable impact upon horticultural processes and productivity across the globe . Climate change will alter the growth patterns and capabilities for flowering and fruiting of many perennial and annual horticultural plants. In some regions perennial fruit crops are likely to experience substantial difficulties because of altered seasonal conditions affecting dormancy, acclimation and subsequent flowering and fruiting. Elsewhere these crops may benefit from the effects of climate change as a result of reduced cold damage and increased length of the growing season. There will be considerable effects for aerial and edaphic microbes invertebrate and vertebrate animals which have benign and pathogenic interactions with horticultural plants. Microbial activity and as a consequence soil fertility may alter. New pests and pathogens may become prevalent and damaging in areas where the climate previously excluded their activity. Vital resources such as water and nutrients may become scarce in some regions reducing opportunities for growing horticultural crops. Wind and windiness are significant factors governing the success of horticultural plants and the scale of their impacts may change as climate alters. Damaging winds could limit crop growing in areas where previously it flourished. Forms of macro- and micro-landscaping will change as the spectrum of plants which can be cultivated alters and the availability of resources and their cost changes driven by scarcities brought about by climate change. The horticultural economy of India as it may be affected by climate change is described as an individual example in a detailed study.