65 resultados para Predator-prey
Resumo:
1 Insects using olfactory stimuli to forage for prey/hosts are proposed to encounter a ‘reliability–detectability problem’, where the usability of a stimulus depends on its reliability as an indicator of herbivore presence and its detectability. 2 We investigated this theory using the responses of female seven-spot ladybirds Coccinella septempunctata (Coleoptera: Coccinellidae) to plant headspace chemicals collected from the peach-potato aphid Myzus persicae and four commercially available Brassica cultivars; Brassica rapa L. cultivar ‘turnip purple top’, Brassica juncea L. cultivar ‘red giant mustard’, Brassica napus L. cultivar ‘Apex’, Brassica napus L. cultivar ‘Courage’ and Arabidopsis thaliana. For each cultivar/species, responses to plants that were undamaged, previously infested by M. persicae and infested with M. persicae, were investigated using dual-choice Petri dish bioassays and circular arenas. 3 There was no evidence that ladybirds responded to headspace chemicals from aphids alone. Ladybirds significantly preferred headspace chemicals from B. napus cv. Apex that were undamaged compared with those from plants infested with aphids. For the other four species/cultivars, there was a consistent trend of the predators being recorded more often in the half of the Petri dish containing plant headspace chemicals from previously damaged and infested plants compared with those from undamaged ones. Furthermore, the mean distance ladybirds walked to reach aphid-infested A. thaliana was significantly shorter than to reach undamaged plants. These results suggest that aphid-induced plant chemicals could act as an arrestment or possibly an attractant stimulus to C. septempunctata. However, it is also possible that C. septempunctata could have been responding to aphid products, such as honeydew, transferred to the previously damaged and infested plants. 4 The results provide evidence to support the ‘reliability–detectability’ theory and suggest that the effectiveness of C. septempunctata as a natural enemy of aphids may be strongly affected by which species and cultivar of Brassica are being grown.
Resumo:
Background American mink forage on land and in water, with aquatic prey often constituting a large proportion of their diet. Their long, thin body shape and relatively poor insulation make them vulnerable to heat loss, particularly in water, yet some individuals dive over 100 times a day. At the level of individual dives, previous research found no difference in dive depth or duration, or the total number of dives per day between seasons, but mink did appear to make more dives per active hour in winter than in summer. There was also no difference in the depth or duration of individual dives between the sexes, but there was some evidence that females made more dives per day than males. However, because individual mink dives tend to be extremely short in duration, persistence (quantified as the number of consecutive dives performed) may be a more appropriate metric with which to compare diving behaviour under different scenarios. Results Mink performed up to 28 consecutive dives, and dived continually for up to 36 min. Periods of more loosely aggregated diving (termed ‘aquatic activity sessions’) comprised up to 80 dives, carried out over up to 162.8 min. Contrary to our predictions, persistence was inversely proportional to body weight, with small animals more persistent than large ones, and (for females, but not for males) increased with decreasing temperature. For both sexes, persistence was greater during the day than during the night. Conclusions The observed body weight effect may point to inter-sexual niche partitioning, since in mink the smallest animals are females and the largest are males. The results may equally point to individual specialism’s, since persistence was also highly variable among individuals. Given the energetic costs involved, the extreme persistence of some animals observed in winter suggests that the costs of occasional prolonged activity in cold water are outweighed by the energetic gains. Analysing dive persistence can provide information on an animal’s physical capabilities for performing multiple dives and may reveal how such behaviour is affected by different conditions. Further development of monitoring and biologging methodology to allow quantification of hunting success, and thus the rewards obtained under alternative scenarios, would be insightful.
Resumo:
Ants often form mutualistic interactions with aphids, soliciting honeydew in return for protective services. Under certain circumstances, however, ants will prey upon aphids. In addition, in the presence of ants aphids may increase the quantity or quality of honeydew produced, which is costly. Through these mechanisms, ant attendance can reduce aphid colony growth rates. However, it is unknown whether demand from within the ant colony can affect the ant-aphid interaction. In a factorial experiment, we tested whether the presence of larvae in Lasius niger ant colonies affected the growth rate of Aphis fabae colonies. Other explanatory variables tested were the origin of ant colonies (two separate colonies were used) and previous diet (sugar only or sugar and protein). We found that the presence of larvae in the ant colony significantly reduced the growth rate of aphid colonies. Previous diet and colony origin did not affect aphid colony growth rates. Our results suggest that ant colonies balance the flow of two separate resources from aphid colonies- renewable sugars or a protein-rich meal, depending on demand from ant larvae within the nest. Aphid payoffs from the ant-aphid interaction may change on a seasonal basis, as the demand from larvae within the ant colony waxes and wanes.
Resumo:
Summary 1. A trophic cascade occurs when predators directly decrease the densities, or change the behaviour, of herbivores and thus indirectly increase plant productivity. The predator–herbivore– plant context is well known, but some predators attack species beneficial to plants (e.g. pollinators) and/or enemies of herbivores (e.g. parasites), and their role in the dynamics of mutualisms remains largely unexplored. 2. We surveyed the predatory ant species and studied predation by the dominant ant species, the weaver ant Oecophylla smaragdina, associated with the fig tree Ficus racemosa in southwest China. We then tested the effects of weaver ants on the oviposition behaviour of pollinating and non-pollinating fig wasps in an ant-exclusion experiment. The effects of weaver ants on fig wasp community structure and fig seed production were then compared between trees with and without O. smaragdina. 3. Oecophylla smaragdina captured more non-pollinating wasps (Platyneura mayri) than pollinators as the insects arrived to lay eggs. When ants were excluded, more non-pollinators laid eggs into figs and fewer pollinators entered figs. Furthermore, trees with O. smaragdina produced more pollinator offspring and fewer non-pollinator offspring, shifting the community structure significantly. In addition, F. racemosa produced significantly more seeds on trees inhabited by weaver ants. 4. Oecophylla smaragdina predation reverses the dominance of the two commonest wasp species at the egg-laying stage and favours the pollinators. This behavioural pattern is mirrored by wasp offspring production, with pollinators’ offspring dominating figs produced by trees inhabited by weaver ants, and offspring of the non-pollinator P. mayri most abundant in figs on trees inhabited by other ants. 5. Overall, our results suggest that predation by weaver ants limits the success of the non-pollinating P. mayri and therefore indirectly benefits the mutualism by increasing the reproductive success of both the pollinators and the plant. Predation is thus a key functional factor that can shape the community structure of a pollinator-plant mutualistic system. Key-words: competitive release, fig wasp, mutualism, predation, predator-exclusion experiment, trophic cascade