99 resultados para Port Weller Dry Docks Limited.
Resumo:
The evaluation of the quality and usefulness of climate modeling systems is dependent upon an assessment of both the limited predictability of the climate system and the uncertainties stemming from model formulation. In this study a methodology is presented that is suited to assess the performance of a regional climate model (RCM), based on its ability to represent the natural interannual variability on monthly and seasonal timescales. The methodology involves carrying out multiyear ensemble simulations (to assess the predictability bounds within which the model can be evaluated against observations) and multiyear sensitivity experiments using different model formulations (to assess the model uncertainty). As an example application, experiments driven by assimilated lateral boundary conditions and sea surface temperatures from the ECMWF Reanalysis Project (ERA-15, 1979–1993) were conducted. While the ensemble experiment demonstrates that the predictability of the regional climate varies strongly between different seasons and regions, being weakest during the summer and over continental regions, important sensitivities of the modeling system to parameterization choices are uncovered. In particular, compensating mechanisms related to the long-term representation of the water cycle are revealed, in which summer dry and hot conditions at the surface, resulting from insufficient evaporation, can persist despite insufficient net solar radiation (a result of unrealistic cloud-radiative feedbacks).
Resumo:
The physiological performance of four cacao clones was examined under three artificial shade regimes over the course of a year in Ghana. Plants under light shade had significantly higher photosynthetic rates in the rainy seasons whereas in the dry season there was a trend of higher photosynthetic rates under heavy shade. The results imply that during the wet seasons light was the main limiting factor to photosynthesis whereas in the dry season vapour pressure deficit was the major factor limiting photosynthesis through stomatal regulation. Leaf area was generally lower under heavier shade but the difference between shade treatments varied between clones. Such differences in leaf area allocation appeared to underlie genotypic differences in final biomass production in response to shade. The results suggest that shade for young cacao should be provided based on the current ambient environment and genotype.
Resumo:
We describe a one-port de-embedding technique suitable for the quasi-optical characterization of terahertz integrated components at frequencies beyond the operational range of most vector network analyzers. This technique is also suitable when the manufacturing of precision terminations to sufficiently fine tolerances for the application of a TRL de-embedding technique is not possible. The technique is based on vector reflection measurements of a series of easily realizable test pieces. A theoretical analysis is presented for the precision of the technique when implemented using a quasi-optical null-balanced bridge reflectometer. The analysis takes into account quantization effects in the linear and angular encoders associated with the balancing procedure, as well as source power and detector noise equivalent power. The precision in measuring waveguide characteristic impedance and attenuation using this de-embedding technique is further analyzed after taking into account changes in the power coupled due to axial, rotational, and lateral alignment errors between the device under test and the instruments' test port. The analysis is based on the propagation of errors after assuming imperfect coupling of two fundamental Gaussian beams. The required precision in repositioning the samples at the instruments' test-port is discussed. Quasi-optical measurements using the de-embedding process for a WR-8 adjustable precision short at 125 GHz are presented. The de-embedding methodology may be extended to allow the determination of S-parameters of arbitrary two-port junctions. The measurement technique proposed should prove most useful above 325 GHz where there is a lack of measurement standards.
Resumo:
In recent years, researchers and policy makers have recognized that nontimber forest products (NTFPs) extracted from forests by rural people can make a significant contribution to their well-being and to the local economy. This study presents and discusses data that describe the contribution of NTFPs to cash income in the dry deciduous forests of Orissa and Jharkhand, India. In its focus on cash income, this study sheds light on how the sale of NTFPs and products that use NTFPs as inputs contribute to the rural economy. From analysis of a unique data set that was collected over the course of a year, the study finds that the contribution of NTFPs to cash income varies across ecological settings, seasons, income level, and caste. Such variation should inform where and when to apply NTFP forest access and management policies.
Resumo:
The bifidobacterial β-galactosidase (BbgIV) was produced in E. coli DH5α at 37 and 30 °C in a 5 L bioreactor under varied conditions of dissolved oxygen (dO2) and pH. The yield of soluble BbgIV was significantly (P < 0.05) increased once the dO2 dropped to 0–2% and remained at such low values during the exponential phase. Limited dO2 significantly (P < 0.05) increased the plasmid copy number and decreased the cells growth rate. Consequently, the BbgIV yield increased to its maximum (71–75 mg per g dry cell weight), which represented 20–25% of the total soluble proteins in the cells. In addition, the specific activity and catalytic efficiency of BbgIV were significantly (P < 0.05) enhanced under limited dO2 conditions. This was concomitant with a change in the enzyme secondary structure, suggesting a link between the enzyme structure and function. The knowledge generated from this work is very important for producing BbgIV as a biocatalyst for the development of a cost-effective process for the synthesis of prebiotic galactooligosaccharides from lactose.
Resumo:
The impact of projected climate change on wine production was analysed for the Demarcated Region of Douro, Portugal. A statistical grapevine yield model (GYM) was developed using climate parameters as predictors. Statistically significant correlations were identified between annual yield and monthly mean temperatures and monthly precipitation totals during the growing cycle. These atmospheric factors control grapevine yield in the region, with the GYM explaining 50.4% of the total variance in the yield time series in recent decades. Anomalously high March rainfall (during budburst, shoot and inflorescence development) favours yield, as well as anomalously high temperatures and low precipitation amounts in May and June (May: flowering and June: berry development). The GYM was applied to a regional climate model output, which was shown to realistically reproduce the GYM predictors. Finally, using ensemble simulations under the A1B emission scenario, projections for GYM-derived yield in the Douro Region, and for the whole of the twenty-first century, were analysed. A slight upward trend in yield is projected to occur until about 2050, followed by a steep and continuous increase until the end of the twenty-first century, when yield is projected to be about 800 kg/ha above current values. While this estimate is based on meteorological parameters alone, changes due to elevated CO2 may further enhance this effect. In spite of the associated uncertainties, it can be stated that projected climate change may significantly benefit wine yield in the Douro Valley.
Resumo:
Accurate differentiation between tropical forest and savannah ecosystems in the fossil pollen record is hampered by the combination of: i) poor taxonomic resolution in pollen identification, and ii) the high species diversity of many lowland tropical families, i.e. with many different growth forms living in numerous environmental settings. These barriers to interpreting the fossil record hinder our understanding of the past distributions of different Neotropical ecosystems and consequently cloud our knowledge of past climatic, biodiversity and carbon storage patterns. Modern pollen studies facilitate an improved understanding of how ecosystems are represented by the pollen their plants produce and therefore aid interpretation of fossil pollen records. To understand how to differentiate ecosystems palynologically, it is essential that a consistent sampling method is used across ecosystems. However, to date, modern pollen studies from tropical South America have employed a variety of methodologies (e.g. pollen traps, moss polsters, soil samples). In this paper, we present the first modern pollen study from the Neotropics to examine the modern pollen rain from moist evergreen tropical forest (METF), semi-deciduous dry tropical forest (SDTF) and wooded savannah (cerradão) using a consistent sampling methodology (pollen traps). Pollen rain was sampled annually in September for the years 1999–2001 from within permanent vegetation study plots in, or near, the Noel Kempff Mercado National Park (NKMNP), Bolivia. Comparison of the modern pollen rain within these plots with detailed floristic inventories allowed estimates of the relative pollen productivity and dispersal for individual taxa to be made (% pollen/% vegetation or ‘p/v’). The applicability of these data to interpreting fossil records from lake sediments was then explored by comparison with pollen assemblages obtained from five lake surface samples.
Resumo:
Many operational weather forecasting centres use semi-implicit time-stepping schemes because of their good efficiency. However, as computers become ever more parallel, horizontally explicit solutions of the equations of atmospheric motion might become an attractive alternative due to the additional inter-processor communication of implicit methods. Implicit and explicit (IMEX) time-stepping schemes have long been combined in models of the atmosphere using semi-implicit, split-explicit or HEVI splitting. However, most studies of the accuracy and stability of IMEX schemes have been limited to the parabolic case of advection–diffusion equations. We demonstrate how a number of Runge–Kutta IMEX schemes can be used to solve hyperbolic wave equations either semi-implicitly or HEVI. A new form of HEVI splitting is proposed, UfPreb, which dramatically improves accuracy and stability of simulations of gravity waves in stratified flow. As a consequence it is found that there are HEVI schemes that do not lose accuracy in comparison to semi-implicit ones. The stability limits of a number of variations of trapezoidal implicit and some Runge–Kutta IMEX schemes are found and the schemes are tested on two vertical slice cases using the compressible Boussinesq equations split into various combinations of implicit and explicit terms. Some of the Runge–Kutta schemes are found to be beneficial over trapezoidal, especially since they damp high frequencies without dropping to first-order accuracy. We test schemes that are not formally accurate for stiff systems but in stiff limits (nearly incompressible) and find that they can perform well. The scheme ARK2(2,3,2) performs the best in the tests.
Resumo:
Sainfoin is a temperate legume that contains condensed tannins (CT), i.e. polyphenols that are able to bind proteins and thus reduce protein degradation in the rumen. A reduction in protein degradation in the rumen can lead to a subsequent increase in amino acid flow to the small intestine. The effects of CT in the rumen and the intestine differ according to the amount and structure of CT and the nature of the protein molecular structure. The objective of the present study was to investigate the degradability in the rumen of three CT-containing sainfoin varieties and CT-free lucerne in relation to CT content and structure (mean degree of polymerization, proportion of prodelphinidins and cis-flavanol units) and protein structure (amide I and II bands, ratio of amide I-to-amide II, α-helix, β-sheet, ratio of α-helix-to-β-sheet). Protein molecular structures were identified using Fourier transform/infrared-attenuated total reflectance (FT/IR-ATR) spectroscopy. The in situ degradability of three sainfoin varieties (Ambra, Esparcette and Villahoz) was studied in 2008, during the first growth cycle at two harvest dates (P1 and P2, i.e. 5 May and 2 June, respectively) and at one date (P3) during the second growth cycle (2 June) and these were compared with a tannin-free legume, lucerne (Aubigny). Loss of dry matter (DMDeg) and nitrogen (NDeg) in polyester bags suspended in the rumen was measured using rumen-fistulated cows. The NDeg of lucerne compared with sainfoin was 0·80 v. 0·77 at P1, 0·78 v. 0·65 at P2 and 0·79 v. 0·70 at P3, respectively. NDeg was related to the rapidly disappearing fraction (‘a’) fraction (r=0·76), the rate of degradation (‘c’) (r=0·92), to the content (r=−0·81) and structure of CT. However, the relationship between NDeg and the slowly disappearing fraction (‘b’) was weak. There was a significant effect of date and species×date, for NDeg and ‘a’ fraction. The secondary protein structure varied with harvest date (species×date) and was correlated with the fraction ‘b’. Both tannin and protein structures influenced the NDeg degradation. CT content and structure were correlated to the ‘a’ fraction and to the ‘c’. Features of the protein molecular secondary structure were correlated to the ‘b’ fraction.
Resumo:
Global warming is expected to enhance fluxes of fresh water between the surface and atmosphere, causing wet regions to become wetter and dry regions drier, with serious implications for water resource management. Defining the wet and dry regions as the upper 30% and lower 70% of the precipitation totals across the tropics (30° S–30° N) each month we combine observations and climate model simulations to understand changes in the wet and dry regions over the period 1850–2100. Observed decreases in precipitation over dry tropical land (1950–2010) are also simulated by coupled atmosphere–ocean climate models (−0.3%/decade) with trends projected to continue into the 21st century. Discrepancies between observations and simulations over wet land regions since 1950 exist, relating to decadal fluctuations in El Niño southern oscillation, the timing of which is not represented by the coupled simulations. When atmosphere-only simulations are instead driven by observed sea surface temperature they are able to adequately represent this variability over land. Global distributions of precipitation trends are dominated by spatial changes in atmospheric circulation. However, the tendency for already wet regions to become wetter (precipitation increases with warming by 3% K−1 over wet tropical oceans) and the driest regions drier (precipitation decreases of −2% K−1 over dry tropical land regions) emerges over the 21st century in response to the substantial surface warming.
Resumo:
In this paper we have proposed and analyzed a simple mathematical model consisting of four variables, viz., nutrient concentration, toxin producing phytoplankton (TPP), non-toxic phytoplankton (NTP), and toxin concentration. Limitation in the concentration of the extracellular nutrient has been incorporated as an environmental stress condition for the plankton population, and the liberation of toxic chemicals has been described by a monotonic function of extracellular nutrient. The model is analyzed and simulated to reproduce the experimental findings of Graneli and Johansson [Graneli, E., Johansson, N., 2003. Increase in the production of allelopathic Prymnesium parvum cells grown under N- or P-deficient conditions. Harmful Algae 2, 135–145]. The robustness of the numerical experiments are tested by a formal parameter sensitivity analysis. As the first theoretical model consistent with the experiment of Graneli and Johansson (2003), our results demonstrate that, when nutrient-deficient conditions are favorable for the TPP population to release toxic chemicals, the TPP species control the bloom of other phytoplankton species which are non-toxic. Consistent with the observations made by Graneli and Johansson (2003), our model overcomes the limitation of not incorporating the effect of nutrient-limited toxic production in several other models developed on plankton dynamics.
Resumo:
Worldwide, many people are zinc (Zn)-deficient. Dietary Zn intake can be increased by producing crops with higher concentrations of Zn in their edible portions. This can be achieved by applying Zn-fertilisers to varieties with an increased ability to acquire Zn and to accumulate Zn in their edible portions. Potato (Solanum tuberosum L.) is an important food crop and is, therefore, a target for bio-fortification with Zn. Field trials incorporating a core collection of 23 potato genotypes, performed over 4 years (2006 – 2009), indicated significant genotypic effects on tuber Zn concentration and suggested that tuber Zn concentration was influenced by environmental effects, but also found that genotype environment (G E) interactions were not significant. Tuber Zn concentrations averaged 10.8 mg kg–1 dry matter (DM), and the ratio between the lowest and the highest varietal tuber Zn-concentration averaged 1.76. Tuber Zn concentrations could be increased by foliar Zn-fertilisation. Tuber yields of ‘Maris Piper’ were unaffected by foliar applications of < 1.08 g Zn plant–1. The relationship between tuber Zn concentration and foliar Zn application followed a saturation curve, reaching a maximum at approx. 30 mg Zn kg–1 DM at a foliar Zn application rate of 1.08 g plant–1. Despite a 40-fold increase in shoot Zn concentration compared to the unfertilised controls following foliar Zn fertilisation with 2.16 g Zn plant–1, only a doubling in tuber Zn concentration was observed. This suggests that the biofortification of tubers with Zn was restricted by the limited mobility of Zn in the phloem. A significant positive linear relationship between tuber Zn concentration and tuber N concentration supported the hypothesis of co-transport of Zn and N-compounds in the phloem.
Resumo:
Eddy covariance measurements of the turbulent sensible heat, latent heat and carbon dioxide fluxes for 12 months (2011–2012) are reported for the first time for a suburban area in the UK. The results from Swindon are comparable to suburban studies of similar surface cover elsewhere but reveal large seasonal variability. Energy partitioning favours turbulent sensible heat during summer (midday Bowen ratio 1.4–1.6) and latent heat in winter (0.05–0.7). A significant proportion of energy is stored (and released) by the urban fabric and the estimated anthropogenic heat flux is small but non-negligible (0.5–0.9 MJ m−2 day−1). The sensible heat flux is negative at night and for much of winter daytimes, reflecting the suburban nature of the site (44% vegetation) and relatively low built fraction (16%). Latent heat fluxes appear to be water limited during a dry spring in both 2011 and 2012, when the response of the surface to moisture availability can be seen on a daily timescale. Energy and other factors are more relevant controls at other times; at night the wind speed is important. On average, surface conductance follows a smooth, asymmetrical diurnal course peaking at around 6–9 mm s−1, but values are larger and highly variable in wet conditions. The combination of natural (vegetative) and anthropogenic (emission) processes is most evident in the temporal variation of the carbon flux: significant photosynthetic uptake is seen during summer, whilst traffic and building emissions explain peak release in winter (9.5 g C m−2 day−1). The area is a net source of CO2 annually. Analysis by wind direction highlights the role of urban vegetation in promoting evapotranspiration and offsetting CO2 emissions, especially when contrasted against peak traffic emissions from sectors with more roads. Given the extent of suburban land use, these results have important implications for understanding urban energy, water and carbon dynamics.