91 resultados para Passive recovery
Resumo:
The building sector is one of the highest consumers of energy in the world. This has led to high dependency on using fossil fuel to supply energy without due consideration to its environmental impact. Saudi Arabia has been through rapid development accompanied by population growth, which in turn has increased the demand for construction. However, this fast development has been met without considering sustainable building design. General design practices rely on using international design approaches and features without considering the local climate and aspects of traditional passive design. This is by constructing buildings with a large amount of glass fully exposed to solar radiation. The aim of this paper is to investigate the development of sustainability in passive design and vernacular architecture. Furthermore, it compares them with current building in Saudi Arabia in terms of making the most of the climate. Moreover, it will explore the most sustainable renewable energy that can be used to reduce the environmental impact on modern building in Saudi Arabia. This will be carried out using case studies demonstrating the performance of vernacular design in Saudi Arabia and thus its benefits in terms of environmental, economic and social sustainability. It argues that the adoption of a hybrid approach can improve the energy efficiency as well as reduce the carbon footprint of buildings. This is by combining passive design, learning from the vernacular architecture and implementing innovative sustainable technologies.
Resumo:
An individual’s affective style is influenced by many things, including the manner in which an individual responds to an emotional challenge. Emotional response is composed of a number of factors, two of which are the initial reactivity to an emotional stimulus and the subsequent recovery once the stimulus terminates or ceases to be relevant. However, most neuroimaging studies examining emotional processing in humans focus on the magnitude of initial reactivity to a stimulus rather than the prolonged response. In this study, we use functional magnetic resonance imaging to study the time course of amygdala activity in healthy adults in response to presentation of negative images. We split the amygdala time course into an initial reactivity period and a recovery period beginning after the offset of the stimulus. We find that initial reactivity in the amygdala does not predict trait measures of affective style. Conversely, amygdala recovery shows predictive power such that slower amygdala recovery from negative images predicts greater trait neuroticism, in addition to lower levels of likability of a set of social stimuli (neutral faces). These data underscore the importance of taking into account temporal dynamics when studying affective processing using neuroimaging.
Resumo:
25 monolingual (L1) children with Specific Language Impairment (SLI), 32 sequential bilingual (L2) children, and 29 L1 controls completed the Test of Active & Passive Sentences-Revised (van der Lely, 1996) and the self-paced listening task with picture verification for actives and passives (Marinis, 2007). These revealed important between-group differences in both tasks. The children with SLI showed difficulties in both actives and passives when they had to reanalyse thematic roles on-line. Their error pattern provided evidence for working memory limitations. The L2 children showed difficulties only in passives both on-line and off-line. We suggest that these relate to the complex syntactic algorithm in passives and reflect an earlier developmental stage due to reduced exposure to the L2. The results are discussed in relation to theories of SLI and can be best accommodated within accounts proposing that difficulties in the comprehension of passives stem from processing limitations.
Resumo:
Abstract. In a recent paper Hu et al. (2011) suggest that the recovery of stratospheric ozone during the first half of this century will significantly enhance free tropospheric and surface warming caused by the anthropogenic increase of greenhouse gases, with the effects being most pronounced in Northern Hemisphere middle and high latitudes. These surprising results are based on a multi-model analysis of CMIP3 model simulations with and without prescribed stratospheric ozone recovery. Hu et al. suggest that in order to properly quantify the tropospheric and surface temperature response to stratospheric ozone recovery, it is necessary to run coupled atmosphere-ocean climate models with stratospheric ozone chemistry. The results of such an experiment are presented here, using a state-of-the-art chemistry-climate model coupled to a three-dimensional ocean model. In contrast to Hu et al., we find a much smaller Northern Hemisphere tropospheric temperature response to ozone recovery, which is of opposite sign. We suggest that their result is an artifact of the incomplete removal of the large effect of greenhouse gas warming between the two different sets of models.
Resumo:
Monthly averaged surface erythemal solar irradiance (UV-Ery) for local noon from 1960 to 2100 has been derived using radiative transfer calculations and projections of ozone, temperature and cloud change from 14 chemistry climate models (CCM), as part of the CCMVal-2 activity of SPARC. Our calculations show the influence of ozone depletion and recovery on erythemal irradiance. In addition, we investigate UV-Ery changes caused by climate change due to increasing greenhouse gas concentrations. The latter include effects of both stratospheric ozone and cloud changes. The derived estimates provide a global picture of the likely changes in erythemal irradiance during the 21st century. Uncertainties arise from the assumed scenarios, different parameterizations – particularly of cloud effects on UV-Ery – and the spread in the CCM projections. The calculations suggest that relative to 1980, annually mean UV-Ery in the 2090s will be on average 12% lower at high latitudes in both hemispheres, 3% lower at mid latitudes, and marginally higher (1 %) in the tropics. The largest reduction (16 %) is projected for Antarctica in October. Cloud effects are responsible for 2–3% of the reduction in UV-Ery at high latitudes, but they slightly moderate it at mid-latitudes (1 %). The year of return of erythemal irradiance to values of certain milestones (1965 and 1980) depends largely on the return of column ozone to the corresponding levels and is associated with large uncertainties mainly due to the spread of the model projections. The inclusion of cloud effects in the calculations has only a small effect of the return years. At mid and high latitudes, changes in clouds and stratospheric ozone transport by global circulation changes due to greenhouse gases will sustain the erythemal irradiance at levels below those in 1965, despite the removal of ozone depleting substances.
Resumo:
Simulations of 15 coupled chemistry climate models, for the period 1960–2100, are presented. The models include a detailed stratosphere, as well as including a realistic representation of the tropospheric climate. The simulations assume a consistent set of changing greenhouse gas concentrations, as well as temporally varying chlorofluorocarbon concentrations in accordance with observations for the past and expectations for the future. The ozone results are analyzed using a nonparametric additive statistical model. Comparisons are made with observations for the recent past, and the recovery of ozone, indicated by a return to 1960 and 1980 values, is investigated as a function of latitude. Although chlorine amounts are simulated to return to 1980 values by about 2050, with only weak latitudinal variations, column ozone amounts recover at different rates due to the influence of greenhouse gas changes. In the tropics, simulated peak ozone amounts occur by about 2050 and thereafter total ozone column declines. Consequently, simulated ozone does not recover to values which existed prior to the early 1980s. The results also show a distinct hemispheric asymmetry, with recovery to 1980 values in the Northern Hemisphere extratropics ahead of the chlorine return by about 20 years. In the Southern Hemisphere midlatitudes, ozone is simulated to return to 1980 levels only 10 years ahead of chlorine. In the Antarctic, annually averaged ozone recovers at about the same rate as chlorine in high latitudes and hence does not return to 1960s values until the last decade of the simulations.
Resumo:
The aim of this work was to investigate the lipopeptides aggregation behavior in single and mixed solutions in a wide range of concentrations, in order to optimize their separation and purification following the two-step ultrafiltration process and using large pore size membranes (up to MWCO = 300 kDa). Micelle size was determined by dynamic light scattering. In single solutions of lipopeptide both surfactin and mycosubtilin formed micelles of different size depending on their concentration, micelles of average diameter = 5–105 nm for surfactin and 8–18 nm for mycosubtilin. However when the lipopeptides were in the same solution they formed mixed micelles of different size (d = 8 nm) and probably conformation to that formed by the individual lipopeptide, this prevents their separation according to size. These lipopeptides were purified from fermentation culture by the two-step ultrafiltration process using different MWCO membranes ranging from 10 to 300 kDa. This led to their effective rejection in the first ultrafiltration step by membranes with MCWO = 10–100 kDa but poor rejection by the 300 KDa membrane. The lipopeptides were recovered at 90% purity (in relation to protein) and with 2.34 enrichment in the permeate of the second ultrafiltration step with the 100 KDa membrane upon addition of 75% ethanol.
Resumo:
We investigate the sensitivity of Northern Hemisphere polar ozone recovery to a scenario in which there is rapid loss of Arctic summer sea ice in the first half of the 21st century. The issue is addressed by coupling a chemistry climate model to an ocean general circulation model and performing simulations of ozone recovery with, and without, an external perturbation designed to cause a rapid and complete loss of summertime Arctic sea ice. Under this extreme perturbation, the stratospheric response takes the form of a springtime polar cooling which is dynamical rather than radiative in origin, and is caused by reduced wave forcing from the troposphere. The response lags the onset of the sea-ice perturbation by about one decade and lasts for more than two decades, and is associated with an enhanced weakening of the North Atlantic meridional overturning circulation. The stratospheric dynamical response leads to a 10 DU reduction in polar column ozone, which is statistically robust. While this represents a modest loss, it has the potential to induce a delay of roughly one decade in Arctic ozone recovery estimates made in the 2006 Scientific Assessment of Ozone Depletion.
Resumo:
Emotional reactivity and the time taken to recover, particularly from negative, stressful, events, are inextricably linked, and both are crucial for maintaining well-being. It is unclear, however, to what extent emotional reactivity during stimulus onset predicts the time course of recovery after stimulus offset. To address this question, 25 participants viewed arousing (negative and positive) and neutral pictures from the International Affective Picture System (IAPS) followed by task-relevant face targets, which were to be gender categorized. Faces were presented early (400–1500 ms) or late (2400–3500 ms) after picture offset to capture the time course of recovery from emotional stimuli. Measures of reaction time (RT), as well as face-locked N170 and P3 components were taken as indicators of the impact of lingering emotion on attentional facilitation or interference. Electrophysiological effects revealed negative and positive images to facilitate face-target processing on the P3 component, regardless of temporal interval. At the individual level, increased reactivity to: (1) negative pictures, quantified as the IAPS picture-locked Late Positive Potential (LPP), predicted larger attentional interference on the face-locked P3 component to faces presented in the late time window after picture offset. (2) Positive pictures, denoted by the LPP, predicted larger facilitation on the face-locked P3 component to faces presented in the earlier time window after picture offset. These results suggest that subsequent processing is still impacted up to 3500 ms after the offset of negative pictures and 1500 ms after the offset of positive pictures for individuals reacting more strongly to these pictures, respectively. Such findings emphasize the importance of individual differences in reactivity when predicting the temporality of emotional recovery. The current experimental model provides a novel basis for future research aiming to identify profiles of adaptive and maladaptive recovery.
Resumo:
We present a simple sieving methodology to aid the recovery of large cultigen pollen grains, such as maize (Zea mays L.), manioc (Manihot esculenta Crantz), and sweet potato (Ipomoea batatas L.), among others, for the detection of food production using fossil pollen analysis of lake sediments in the tropical Americas. The new methodology was tested on three large study lakes located next to known and/or excavated pre-Columbian archaeological sites in South and Central America. Five paired samples, one treated by sieving, the other prepared using standard methodology, were compared for each of the three sites. Using the new methodology, chemically digested sediment samples were passed through a 53 µm sieve, and the residue was retained, mounted in silicone oil, and counted for large cultigen pollen grains. The filtrate was mounted and analysed for pollen according to standard palynological procedures. Zea mays (L.) was recovered from the sediments of all three study lakes using the sieving technique, where no cultigen pollen had been previously recorded using the standard methodology. Confidence intervals demonstrate there is no significant difference in pollen assemblages between the sieved versus unsieved samples. Equal numbers of exotic Lycopodium spores added to both the filtrate and residue of the sieved samples allow for direct comparison of cultigen pollen abundance with the standard terrestrial pollen count. Our technique enables the isolation and rapid scanning for maize and other cultigen pollen in lake sediments, which, in conjunction with charcoal and pollen records, is key to determining land-use patterns and the environmental impact of pre-Columbian societies.
Resumo:
We derive energy-norm a posteriori error bounds, using gradient recovery (ZZ) estimators to control the spatial error, for fully discrete schemes for the linear heat equation. This appears to be the �rst completely rigorous derivation of ZZ estimators for fully discrete schemes for evolution problems, without any restrictive assumption on the timestep size. An essential tool for the analysis is the elliptic reconstruction technique.Our theoretical results are backed with extensive numerical experimentation aimed at (a) testing the practical sharpness and asymptotic behaviour of the error estimator against the error, and (b) deriving an adaptive method based on our estimators. An extra novelty provided is an implementation of a coarsening error "preindicator", with a complete implementation guide in ALBERTA in the appendix.
Resumo:
The new thermoelectric material BiOCuTe exhibits an electrical conductivity of 224 S cm-1 and a Seebeck coefficient of +186 μV K-1 at 373 K, together with an extremely low lattice thermal conductivity of ∼ 0.5 W m-1 K-1. This results in a ZT of 0.42 at 373 K, which increases to 0.66 at the maximum temperature investigated, 673 K.
Resumo:
Background Major depressive disorders (MDD) are a debilitating and pervasive group of mental illnesses afflicting many millions of people resulting in the loss of 110 million working days and more than 2,500 suicides per annum. Adolescent MDD patients attending NHS clinics show high rates of recurrence into adult life. A meta-analysis of recent research shows that psychological treatments are not as efficacious as previously thought. Modest treatment outcomes of approximately 65% of cases responding suggest that aetiological and clinical heterogeneity may hamper the better use of existing therapies and discovery of more effective treatments. Information with respect to optimal treatment choice for individuals is lacking, with no validated biomarkers to aid therapeutic decision-making. Methods/Design Magnetic resonance-Improving Mood with Psychoanalytic and Cognitive Therapies, the MR-IMPACT study, plans to identify brain regions implicated in the pathophysiology of depressions and examine whether there are specific behavioural or neural markers predicting remission and/or subsequent relapse in a subsample of depressed adolescents recruited to the IMPACT randomised controlled trial (Registration # ISRCTN83033550). Discussion MR-IMPACT is an investigative biomarker component of the IMPACT pragmatic effectiveness trial. The aim of this investigation is to identify neural markers and regional indicators of the pathophysiology of and treatment response for MDD in adolescents. We anticipate that these data may enable more targeted treatment delivery by identifying those patients who may be optimal candidates for therapeutic response.
Resumo:
Purpose in life predicts both health and longevity suggesting that the ability to find meaning from life’s experiences, especially when confronting life’s challenges, may be a mechanism underlying resilience. Having purpose in life may motivate reframing stressful situations to deal with them more productively, thereby facilitating recovery from stress and trauma. In turn, enhanced ability to recover from negative events may allow a person to achieve or maintain a feeling of greater purpose in life over time. In a large sample of adults (aged 36-84 years) from the MIDUS study (Midlife in the U.S., http://www.midus.wisc.edu/), we tested whether purpose in life was associated with better emotional recovery following exposure to negative picture stimuli indexed by the magnitude of the eyeblink startle reflex (EBR), a measure sensitive to emotional state. We differentiated between initial emotional reactivity (during stimulus presentation) and emotional recovery (occurring after stimulus offset). Greater purpose in life, assessed over two years prior, predicted better recovery from negative stimuli indexed by a smaller eyeblink after negative pictures offset, even after controlling for initial reactivity to the stimuli during the picture presentation, gender, age, trait affect, and other well-being dimensions. These data suggest a proximal mechanism by which purpose in life may afford protection from negative events and confer resilience is through enhanced automatic emotion regulation after negative emotional provocation.
Resumo:
This paper provides some additional evidence in support of the hypothesis that robot therapies are clinically beneficial in neurorehabilitation. Although only 4 subjects were included in the study, the design of the intervention and the measures were done so as to minimise bias. The results are presented as single case studies, and can only be interpreted as such due to the study size. The intensity of intervention was 16 hours and the therapy philosophy (based on Carr and Shepherd) was that coordinated movements are preferable to joint based therapies, and that coordinating distal movements (in this case grasps) helps not only to recover function in these areas, but has greater value since the results are immediately transferable to daily skills such as reach and grasp movements.