121 resultados para Parallel programming
Resumo:
With the transition to multicore processors almost complete, the parallel processing community is seeking efficient ways to port legacy message passing applications on shared memory and multicore processors. MPJ Express is our reference implementation of Message Passing Interface (MPI)-like bindings for the Java language. Starting with the current release, the MPJ Express software can be configured in two modes: the multicore and the cluster mode. In the multicore mode, parallel Java applications execute on shared memory or multicore processors. In the cluster mode, Java applications parallelized using MPJ Express can be executed on distributed memory platforms like compute clusters and clouds. The multicore device has been implemented using Java threads in order to satisfy two main design goals of portability and performance. We also discuss the challenges of integrating the multicore device in the MPJ Express software. This turned out to be a challenging task because the parallel application executes in a single JVM in the multicore mode. On the contrary in the cluster mode, the parallel user application executes in multiple JVMs. Due to these inherent architectural differences between the two modes, the MPJ Express runtime is modified to ensure correct semantics of the parallel program. Towards the end, we compare performance of MPJ Express (multicore mode) with other C and Java message passing libraries---including mpiJava, MPJ/Ibis, MPICH2, MPJ Express (cluster mode)---on shared memory and multicore processors. We found out that MPJ Express performs signicantly better in the multicore mode than in the cluster mode. Not only this but the MPJ Express software also performs better in comparison to other Java messaging libraries including mpiJava and MPJ/Ibis when used in the multicore mode on shared memory or multicore processors. We also demonstrate effectiveness of the MPJ Express multicore device in Gadget-2, which is a massively parallel astrophysics N-body siimulation code.
Resumo:
Recent research in multi-agent systems incorporate fault tolerance concepts. However, the research does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely ‘Intelligent Agents’. In the approach considered a task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The agents hence contribute towards fault tolerance and towards building reliable systems. The feasibility of the approach is validated by simulations on an FPGA using a multi-agent simulator and implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.
Resumo:
A connection between a fuzzy neural network model with the mixture of experts network (MEN) modelling approach is established. Based on this linkage, two new neuro-fuzzy MEN construction algorithms are proposed to overcome the curse of dimensionality that is inherent in the majority of associative memory networks and/or other rule based systems. The first construction algorithm employs a function selection manager module in an MEN system. The second construction algorithm is based on a new parallel learning algorithm in which each model rule is trained independently, for which the parameter convergence property of the new learning method is established. As with the first approach, an expert selection criterion is utilised in this algorithm. These two construction methods are equivalent in their effectiveness in overcoming the curse of dimensionality by reducing the dimensionality of the regression vector, but the latter has the additional computational advantage of parallel processing. The proposed algorithms are analysed for effectiveness followed by numerical examples to illustrate their efficacy for some difficult data based modelling problems.
Resumo:
This paper, one of a simultaneously published set, describes the establishment in 1990 of the UK standards project for the Pop programming language, and the progress of the project to the end of 1993.
Resumo:
In 1989, the computer programming language POP-11 is 21 years old. This book looks at the reasons behind its invention, and traces its rise from an experimental language to a major AI language, playing a major part in many innovating projects. There is a chapter on the inventor of the language, Robin Popplestone, and a discussion of the applications of POP-11 in a variety of areas. The efficiency of AI programming is covered, along with a comparison between POP-11 and other programming languages. The book concludes by reviewing the standardization of POP-11 into POP91.
Resumo:
Across the world there are many bodies currently involved in researching into the design of autonomous guided vehicles (AGVs). One of the greatest problems at present however, is that much of the research work is being conducted in isolated groups, with the resulting AGVs sensor/control/command systems being almost completely nontransferable to other AGV designs. This paper describes a new modular method for robot design which when applied to AGVs overcomes the above problems. The method is explained here with respect to all forms of robotics but the examples have been specifically chosen to reflect typical AGV systems.
Resumo:
The premotor theory of attention claims that attentional shifts are triggered during response programming, regardless of which response modality is involved. To investigate this claim, event-related brain potentials (ERPs) were recorded while participants covertly prepared a left or right response, as indicated by a precue presented at the beginning of each trial. Cues signalled a left or right eye movement in the saccade task, and a left or right manual response in the manual task. The cued response had to be executed or withheld following the presentation of a Go/Nogo stimulus. Although there were systematic differences between ERPs triggered during covert manual and saccade preparation, lateralised ERP components sensitive to the direction of a cued response were very similar for both tasks, and also similar to the components previously found during cued shifts of endogenous spatial attention. This is consistent with the claim that the control of attention and of covert response preparation are closely linked. N1 components triggered by task-irrelevant visual probes presented during the covert response preparation interval were enhanced when these probes were presented close to cued response hand in the manual task, and at the saccade target location in the saccade task. This demonstrates that both manual and saccade preparation result in spatially specific modulations of visual processing, in line with the predictions of the premotor theory.