117 resultados para PLANKTONIC BACTERIA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To assess the effect of the growth promoter avilamycin on emergence and persistence of resistance in enteric bacteria in the pig. Methods and Results: Pigs ( treated with avilamycin for 3 months and controls) were challenged with multiresistant Salmonella Typhimurium DT104 and faecal counts were performed for enterococci, Escherichia coli, S. Typhimurium and Campylobacter ( before, during and 5 weeks post-treatment). Representative isolates were tested for antibiotic resistance and for the presence of resistance genes. Avilamycin-resistant Enterococci faecalis (speciated by PCR) were isolated from the treated pigs and continued to be detected for the first week after treatment had ceased. The avilamycin- resistance gene was characterized by PCR as the emtA gene and speciation by PCR. MIC profiling confirmed that more than one strain of Ent. faecalis carried this gene. There was no evidence of increased antimicrobial resistance in the E. coli, Salmonella and Campylobacter populations, although there was a higher incidence of tetB positive E. coli in the treated pigs than the controls. Conclusion: Although avilamycin selects for resistance in the native enterococci population of the pig, no resistant isolates were detected beyond 1 week post-treatment. This suggests that resistant isolates were unable to persist once selective pressure was removed and were out-competed by the sensitive microflora. Significance and Impact of the Study: Our data suggest the risk of resistant isolates becoming carcass contaminants and infecting humans could be minimized by introducing a withdrawal period after using avilamycin and prior to slaughter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four conventionally reared goats aged 6 days were inoculated orally with approximately 10(10) colony-forming units (cfu) of a non-verotoxigenic strain of Escherichia coli O157:H7. All remained clinically normal. Tissues were sampled under terminal anaesthesia at 24 (two animals), 48 and 72 h post-inoculation (hpi). E. coli O157:H7 was cultured from the ileum, caecum, colon and rectum of all animals, but the number of bacteria recovered at these sites varied between animals. Attaching-effacing (AE) lesions associated with O157 organisms, as confirmed by immunolabelling, were observed in the ileum of one of the two animals examined at 24 hpi, and in the ileum, caecum and proximal colon of an animal examined at 72 hpi. E. coliO157 organisms were detected at > 105 cfu/g of tissue at these sites. In addition, A-E lesions associated with unidentified bacteria were observed at various sites in the large bowel of the same animals. Lesions containing both E. coliO157 and unidentified bacteria (non-O157) were not observed. Non-O157 AE lesions were also observed in the large bowel of one of two uninoculated control animals. This indicated that three (one control and two inoculated) animals were colonized with an unidentified AE organism before the commencement of the experiment. The O157-associated AE lesions were observed only in animals colonized by non-O157 AE organisms and this raises questions about individual host susceptibility to AE lesions and whether non-O157 AE organisms influence colonization by E. coli O157.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enteric bacteria with a demonstrable or potential ability to form attaching-effacing lesions, so-called attaching-effacing (AE) bacteria, have been found in the intestinal tracts of a wide variety of warm-blooded animal species, including man. In some host species, for example cattle, pigs, rabbits and human beings, attaching-effacing Escherichia coli (AEEC) have an established role as enteropathogens. In other host species, AE bacteria are of less certain significance. With continuing advances in the detection and typing of AE strains, the importance of these bacteria for many hosts is likely to become clearer. The pathogenic effects of AE bacteria result from adhesion to the intestinal mucosa by a variety of mechanisms, culminating in the formation of the characteristic intimate adhesion of the AE lesion. The ability to induce AE lesions is mediated by the co-ordinated expression of some 40 bacterial genes organized within a so-called pathogenicity island, known as the "Locus for Enterocyte Effacement". It is also believed that the production of bacterial toxins, principally Vero toxins, is a significant virulence factor for some A-EEC strains. Recent areas of research into AE bacteria include: the use of Citrobacter rodentium to model human AEEC disease; quorum-sensing mechanisms used by AEEC to modulate virulence gene expression; and the potential role of adhesion in the persistent colonization of the intestine by AE bacteria. This review of AE bacteria covers their molecular biology, their occurrence in various animal species, and the diagnosis, pathology and clinical aspects of animal diseases with which they are associated. Reference is made to human pathogens where appropriate. The focus is mainly on natural colonization and disease, but complementary experimental data are also included. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oral administration of probiotic bacteria has shown potential in clinical trials for the alleviation of specific disorders of the gastrointestinal tract. However, cells must be alive in order to exert these benefits. The low pH of the stomach can greatly reduce the number of viable microorganisms that reach the intestine, thereby reducing the efficacy of the administration. Herein, a model probiotic, Bifidobacterium breve, has been encapsulated into an alginate matrix before coating in multilayers of alternating alginate and chitosan. The intention of this formulation was to improve the survival of B. breve during exposure to low pH and to target the delivery of the cells to the intestine. The material properties were first characterized before in vitro testing. Biacore™ experiments allowed for the polymer interactions to be confirmed; additionally, the stability of these multilayers to buffers simulating the pH of the gastrointestinal tract was demonstrated. Texture analysis was used to monitor changes in the gel strength during preparation, showing a weakening of the matrices during coating as a result of calcium ion sequestration. The build-up of multilayers was confirmed by confocal laser-scanning microscopy, which also showed the increase in the thickness of coat over time. During exposure to in vitro gastric conditions, an increase in viability from <3 log(CFU) per mL, seen in free cells, up to a maximum of 8.84 ± 0.17 log(CFU) per mL was noted in a 3-layer coated matrix. Multilayer-coated alginate matrices also showed a targeting of delivery to the intestine, with a gradual release of their loads over 240 min.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interplay between dietary nutrients, gut microbiota and mammalian host tissues of the gastrointestinal tract is recognised as highly relevant for host health. Combined transcriptome, metabonome and microbial profiling tools were employed to analyse the dynamic responses of germfree mouse colonic mucosa to colonisation by normal mouse microbiota (conventionalisation) at different time-points during 16 days. The colonising microbiota showed a shift from early (days 1 and 2) to later colonisers (days 8 and 16). The dynamic changes in the microbial community were rapidly reflected by the urine metabolic profiles (day 1) and at later stages (day 4 onward) by the colon mucosa transcriptome and metabolic profiles. Correlations of host transcriptomes, metabolite patterns and microbiota composition revealed associations between Bacilli and Proteobacteria, and differential expression of host genes involved in energy and anabolic metabolism. Differential gene expression correlated with scyllo- and myo-inositol, glutamine, glycine and alanine levels in colonic tissues during the time span of conventionalisation. Our combined time-resolved analyses may help to expand the understanding of host-microbe molecular interactions during the microbial establishment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Early microbial colonization of the gut reduces the incidence of infectious, inflammatory and autoimmune diseases. Recent population studies reveal that childhood hygiene is a significant risk factor for development of inflammatory bowel disease, thereby reinforcing the hygiene hypothesis and the potential importance of microbial colonization during early life. The extent to which early-life environment impacts on microbial diversity of the adult gut and subsequent immune processes has not been comprehensively investigated thus far. We addressed this important question using the pig as a model to evaluate the impact of early-life environment on microbe/host gut interactions during development. Results: Genetically-related piglets were housed in either indoor or outdoor environments or in experimental isolators. Analysis of over 3,000 16S rRNA sequences revealed major differences in mucosa-adherent microbial diversity in the ileum of adult pigs attributable to differences in earlylife environment. Pigs housed in a natural outdoor environment showed a dominance of Firmicutes, in particular Lactobacillus, whereas animals housed in a hygienic indoor environment had reduced Lactobacillus and higher numbers of potentially pathogenic phylotypes. Our analysis revealed a strong negative correlation between the abundance of Firmicutes and pathogenic bacterial populations in the gut. These differences were exaggerated in animals housed in experimental isolators. Affymetrix microarray technology and Real-time Polymerase Chain Reaction revealed significant gut-specific gene responses also related to early-life environment. Significantly, indoorhoused pigs displayed increased expression of Type 1 interferon genes, Major Histocompatibility Complex class I and several chemokines. Gene Ontology and pathway analysis further confirmed these results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is common practice to freeze dry probiotic bacteria to improve their shelf life. However, the freeze drying process itself can be detrimental to their viability. The viability of probiotics could be maintained if they are administered within a microbially produced biodegradable polymer - poly-γ-glutamic acid (γ-PGA) - matrix. Although the antifreeze activity of γ-PGA is well known, it has not been used for maintaining the viability of probiotic bacteria during freeze drying. The aim of this study was to test the effect of γ-PGA (produced by B. subtilis natto ATCC 15245) on the viability of probiotic bacteria during freeze drying and to test the toxigenic potential of B. subtilis natto. 10% γ-PGA was found to protect Lactobacillus paracasei significantly better than 10% sucrose, whereas it showed comparable cryoprotectant activity to sucrose when it was used to protect Bifidobacterium breve and Bifidobacterium longum. Although γ-PGA is known to be non-toxic, it is crucial to ascertain the toxigenic potential of its source, B. subtilis natto. Presence of six genes that are known to encode for toxins were investigated: three component hemolysin (hbl D/A), three component non-haemolytic enterotoxin (nheB), B. cereus enterotoxin T (bceT), enterotoxin FM (entFM), sphingomyelinase (sph) and phosphatidylcholine-specific phospholipase (piplc). From our investigations, none of these six genes were present in B. subtilis natto. Moreover, haemolytic and lecithinase activities were found to be absent. Our work contributes a biodegradable polymer from a non-toxic source for the cryoprotection of probiotic bacteria, thus improving their survival during the manufacturing process.