68 resultados para Orthogonal polynomial


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose an efficient two-level model identification method for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularization parameters in the elastic net are optimized using a particle swarm optimization (PSO) algorithm at the upper level by minimizing the leave one out (LOO) mean square error (LOOMSE). Illustrative examples are included to demonstrate the effectiveness of the new approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study convergence of the L2-projection onto the space of polynomials up to degree p on a simplex in Rd, d >= 2. Optimal error estimates are established in the case of Sobolev regularity and illustrated on several numerical examples. The proof is based on the collapsed coordinate transform and the expansion into various polynomial bases involving Jacobi polynomials and their antiderivatives. The results of the present paper generalize corresponding estimates for cubes in Rd from [P. Houston, C. Schwab, E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002), no. 6, 2133-2163].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a polynomial-based noise variance estimator for multiple-input multiple-output single-carrier block transmission (MIMO-SCBT) systems. It is shown that the optimal pilots for noise variance estimation satisfy the same condition as that for channel estimation. Theoretical analysis indicates that the proposed estimator is statistically more efficient than the conventional sum of squared residuals (SSR) based estimator. Furthermore, we obtain an efficient implementation of the estimator by exploiting its special structure. Numerical results confirm our theoretical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper we study the approximation of functions with bounded mixed derivatives by sparse tensor product polynomials in positive order tensor product Sobolev spaces. We introduce a new sparse polynomial approximation operator which exhibits optimal convergence properties in L2 and tensorized View the MathML source simultaneously on a standard k-dimensional cube. In the special case k=2 the suggested approximation operator is also optimal in L2 and tensorized H1 (without essential boundary conditions). This allows to construct an optimal sparse p-version FEM with sparse piecewise continuous polynomial splines, reducing the number of unknowns from O(p2), needed for the full tensor product computation, to View the MathML source, required for the suggested sparse technique, preserving the same optimal convergence rate in terms of p. We apply this result to an elliptic differential equation and an elliptic integral equation with random loading and compute the covariances of the solutions with View the MathML source unknowns. Several numerical examples support the theoretical estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quasi-uniform grids of the sphere have become popular recently since they avoid parallel scaling bottle- necks associated with the poles of latitude–longitude grids. However quasi-uniform grids of the sphere are often non- orthogonal. A version of the C-grid for arbitrary non- orthogonal grids is presented which gives some of the mimetic properties of the orthogonal C-grid. Exact energy conservation is sacrificed for improved accuracy and the re- sulting scheme numerically conserves energy and potential enstrophy well. The non-orthogonal nature means that the scheme can be used on a cubed sphere. The advantage of the cubed sphere is that it does not admit the computa- tional modes of the hexagonal or triangular C-grids. On var- ious shallow-water test cases, the non-orthogonal scheme on a cubed sphere has accuracy less than or equal to the orthog- onal scheme on an orthogonal hexagonal icosahedron. A new diamond grid is presented consisting of quasi- uniform quadrilaterals which is more nearly orthogonal than the equal-angle cubed sphere but with otherwise similar properties. It performs better than the cubed sphere in ev- ery way and should be used instead in codes which allow a flexible grid structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient two-level model identification method aiming at maximising a model׳s generalisation capability is proposed for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularisation parameters in the elastic net are optimised using a particle swarm optimisation (PSO) algorithm at the upper level by minimising the leave one out (LOO) mean square error (LOOMSE). There are two elements of original contributions. Firstly an elastic net cost function is defined and applied based on orthogonal decomposition, which facilitates the automatic model structure selection process with no need of using a predetermined error tolerance to terminate the forward selection process. Secondly it is shown that the LOOMSE based on the resultant ENOFR models can be analytically computed without actually splitting the data set, and the associate computation cost is small due to the ENOFR procedure. Consequently a fully automated procedure is achieved without resort to any other validation data set for iterative model evaluation. Illustrative examples are included to demonstrate the effectiveness of the new approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show how two linearly independent vectors can be used to construct two orthogonal vectors of equal magnitude in a simple way. The proof that the constructed vectors are orthogonal and of equal magnitude is a good exercise for students studying properties of scalar and vector triple products. We then show how this result can be used to prove van Aubel's theorem that relates the two line segments joining the centres of squares on opposite sides of a plane quadrilateral.