82 resultados para Olfactory nerve pathways


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian aging is accompanied by a progressive loss of skeletal muscle, a process called sarcopenia. Myostatin, a secreted member of the transforming growth factor-β family of signaling molecules, has been shown to be a potent inhibitor of muscle growth. Here, we examined whether muscle growth could be promoted in aged animals by antagonizing the activity of myostatin through the neutralizing activity of the myostatin propeptide. We show that a single injection of an AAV8 virus expressing the myostatin propeptide induced an increase in whole body weights and all muscles examined within 7 weeks of treatment. Our cellular studies demonstrate that muscle enlargement was due to selective fiber type hypertrophy, which was accompanied by a shift toward a glycolytic phenotype. Our molecular investigations elucidate the mechanism underpinning muscle hypertrophy by showing a decrease in the expression of key genes that control ubiquitin-mediated protein breakdown. Most importantly, we show that the hypertrophic muscle that develops as a consequence of myostatin propeptide in aged mice has normal contractile properties. We suggest that attenuating myostatin signaling could be a very attractive strategy to halt and possibly reverse age-related muscle loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors examine the housing pathways of young people in the UK in the years 1999 to 2008, and consider the changing nature of these pathways in the run up to 2020. They employ a highly innovative methodology, which begins with the identification and description of key drivers likely to affect young people’s housing circumstances in the future. The empirical identification and analysis of housing pathways is then achieved using multiple-sequence analysis and cluster analysis of the British Household Panel Survey, contextualised by qualitative interviews with a large sample of young people. The authors describe how the interactions between the meanings, perceptions, and aspirations of young people, and the opportunities and constraints imposed by the drivers, are having a major impact on young people’s housing pathways, resulting in considerable housing policy challenges, particularly in relation to the private rented sector

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schwann cells (SCs) are the supporting cells of the peripheral nervous system and originate from the neural crest. They play a unique role in the regeneration of injured peripheral nerves and have themselves a highly unstable phenotype as demonstrated by their unexpectedly broad differentiation potential. Thus, SCs can be considered as dormant, multipotent neural crest-derived progenitors or stem cells. Upon injury they de-differentiate via cellular reprogramming, re-enter the cell cycle and participate in the regeneration of the nerve. Here we describe a protocol for efficient generation of neurospheres from intact adult rat and murine sciatic nerve without the need of experimental in vivo pre-degeneration of the nerve prior to Schwann cell isolation. After isolation and removal of the connective tissue, the nerves are initially plated on poly-D-lysine coated cell culture plates followed by migration of the cells up to 80% confluence and a subsequent switch to serum-free medium leading to formation of multipotent neurospheres. In this context, migration of SCs from the isolated nerve, followed by serum-free cultivation of isolated SCs as neurospheres mimics the injury and reprograms fully differentiated SCs into a multipotent, neural crest-derived stem cell phenotype. This protocol allows reproducible generation of multipotent Schwann cell-derived neurospheres from sciatic nerve through cellular reprogramming by culture, potentially marking a starting point for future detailed investigations of the de-differentiation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feeding damage to plants by insect herbivores induces the production of plant volatiles, which are attractive to the herbivores natural enemies. Little is understood about the plant biochemical pathways involved in aphid-induced plant volatile production. The aphid parasitoid Diaeretiella rapae can detect and respond to aphid-induced volatiles produced by Arabidopsis thaliana. When given experience of those volatiles, it can learn those cues and can therefore be used as a novel biosensor to detect them. The pathways involved in aphid-induced volatile production were investigated by comparing the responses of D. rapae to volatiles from a number of different transgenic mutants of A. thaliana, mutated in their octadecanoid, ethylene or salicylic acid wound-response pathways and also from wild-type plants. Plants were either undamaged or infested by the peach-potato aphid, Myzus persicae. It is demonstrated that the octadecanoid pathway and specifically the COI1 gene are required for aphid-induced volatile production. The presence of salicylic acid is also involved in volatile production. Using this model system, in combination with A. thaliana plants with single point gene mutations, has potential for the precise dissection of biochemical pathways involved in the production of aphid-induced volatiles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims Despite recent recognition that (1) plant–herbivore interactions during the establishment phase, (2) ontogenetic shifts in resource allocation and (3) herbivore response to plant volatile release are each pivotal to a comprehensive understanding of plant defence, no study has examined how herbivore olfactory response varies during seedling ontogeny. Methods Using a Y-tube olfactometer we examined snail (Helix aspersa) olfactory response to pellets derived from macerated Plantago lanceolata plants harvested at 1, 2, 3, 4, 5, 6 and 8 weeks of age to test the hypothesis that olfactory selection of plants by a generalist herbivore varies with plant age. Plant volatiles were collected for 10 min using solid-phase microextraction technique on 1- and 8-week-old P. lanceolata pellets and analysed by gas chromatography coupled with a mass spectrometer. Key Results Selection of P. lanceolata was strongly negatively correlated with increasing age; pellets derived from 1-week-old seedlings were three times more likely to be selected as those from 8-week-old plants. Comparison of plant selection experiments with plant volatile profiles from GC/MS suggests that patterns of olfactory selection may be linked to ontogenetic shifts in concentrations of green leaf volatiles and ethanol (and its hydrolysis derivatives). Conclusions Although confirmatory of predictions made by contemporary plant defence theory, this is the first study to elucidate a link between seedling age and olfactory selection by herbivores. As a consequence, this study provides a new perspective on the ontogenetic expression of seedling defence, and the role of seedling herbivores, particularly terrestrial molluscs, as selective agents in temperate plant communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Future land use change (LUC) is an important component of the IPCC representative concentration pathways (RCPs), but in these scenarios' radiative forcing targets the climate impact of LUC only includes greenhouse gases. However, climate effects due to physical changes of the land surface can be as large. Here we show the critical importance of including non-carbon impacts of LUC when considering the RCPs. Using an ensemble of climate model simulations with and without LUC, we show that the net climate effect is very different from the carbon-only effect. Despite opposite signs of LUC, all the RCPs assessed here have a small net warming from LUC because of varying biogeophysical effects, and in RCP4.5 the warming is outside of the expected variability. The afforestation in RCP4.5 decreases surface albedo, making the net global temperature anomaly over land around five times larger than RCPs 2.6 and 8.5, for around twice the amount of LUC. Consequent changes to circulation in RCP4.5 in turn reduce Arctic sea ice cover. The small net positive temperature effect from LUC could make RCP4.5's universal carbon tax, which incentivizes retaining and growing forest, counter productive with respect to climate. However, there are spatial differences in the balance of impacts, and potential climate gains would need to be assessed against other environmental aims.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The foraging strategies of two natural enemies of the peach-potato aphid Myzus persicae: the seven-spot ladybird Coccinella septempunctata and the parasitoid wasp Diaeretiella rapae, were investigated. Specifically the roles of plant semiochemicals in the location of plants infested with M. persicae by these natural enemies were examined. I investigated the olfactory responses of female C. septempunctata to volatiles collected from M. persicae and four Brassica cultivars; Brassica rapa, B. juncea, B. napus cultivar ‘Apex’ and B. napus cultivar ‘Courage’ and wild-type Arabidopsis thaliana that were: undamaged, previously infested by M. persicae and infested with M. persicae. C. septempunctata showed no attraction to volatiles from M. persicae alone. C. septempunctata significantly changed its searching behaviour in response to plant volatiles from B. rapa, B. napus cv. ‘Apex’ and Arabidopsis infested with M. persicae. C. septempunctata was also found to display a significant turning bias when foraging on a branching horizontal wire stem. A model was developed to investigate how turning biases affect the foraging efficiency of C. septempunctata in dichotomous branched environments. Simulations using this model indicated that turning biases could potentially increase searching efficiency. D. rapae showed a significant preference for volatiles from M. persicae infested wild-type Arabidopsis but no preference to volatiles from M. persicae alone or M. persicae honeydew. Volatile emissions by Arabidopsis were shown to be localised to the area of aphid-infestation rather than systemic. Using gas chromatography plants infested with M. persicae were shown to emit a quantitatively different volatile blend than undamaged plants. In experiments with jasmonate mutants of Arabidopsis the jasmonate (octadecanoid) wound response pathway was implicated as being important for the production of M. persicae induced volatiles, attractive to D. rapae. Other wound response pathways were also found to be involved in the production of the full blend of M. persicae induced volatiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change is projected to cause substantial alterations in vegetation distribution, but these have been given little attention in comparison to land-use in the Representative Concentration Pathway (RCP) scenarios. Here we assess the climate-induced land cover changes (CILCC) in the RCPs, and compare them to land-use land cover change (LULCC). To do this, we use an ensemble of simulations with and without LULCC in earth system model HadGEM2-ES for RCP2.6, RCP4.5 and RCP8.5. We find that climate change causes an expansion poleward of vegetation that affects more land area than LULCC in all of the RCPs considered here. The terrestrial carbon changes from CILCC are also larger than for LULCC. When considering only forest, the LULCC is larger, but the CILCC is highly variable with the overall radiative forcing of the scenario. The CILCC forest increase compensates 90% of the global anthropogenic deforestation by 2100 in RCP8.5, but just 3% in RCP2.6. Overall, bigger land cover changes tend to originate from LULCC in the shorter term or lower radiative forcing scenarios, and from CILCC in the longer term and higher radiative forcing scenarios. The extent to which CILCC could compensate for LULCC raises difficult questions regarding global forest and biodiversity offsetting, especially at different timescales. This research shows the importance of considering the relative size of CILCC to LULCC, especially with regard to the ecological effects of the different RCPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: MS-based proteomics was applied to the analysis of the medicinal plant Artemisia annua, exploiting a recently published contig sequence database (Graham et al. (2010) Science 327, 328–331) and other genomic and proteomic sequence databases for comparison. A. annua is the predominant natural source of artemisinin, the precursor for artemisinin-based combination therapies (ACTs), which are the WHO-recommended treatment for P. falciparum malaria. Results: The comparison of various databases containing A. annua sequences (NCBInr/viridiplantae, UniProt/ viridiplantae, UniProt/A. annua, an A. annua trichome Trinity contig database, the above contig database and another A. annua EST database) revealed significant differences in respect of their suitability for proteomic analysis, showing that an organism-specific database that has undergone extensive curation, leading to longer contig sequences, can greatly increase the number of true positive protein identifications, while reducing the number of false positives. Compared to previously published data an order-of-magnitude more proteins have been identified from trichome-enriched A. annua samples, including proteins which are known to be involved in the biosynthesis of artemisinin, as well as other highly abundant proteins, which suggest additional enzymatic processes occurring within the trichomes that are important for the biosynthesis of artemisinin. Conclusions: The newly gained information allows for the possibility of an enzymatic pathway, utilizing peroxidases, for the less well understood final stages of artemisinin’s biosynthesis, as an alternative to the known non-enzymatic in vitro conversion of dihydroartemisinic acid to artemisinin. Data are available via ProteomeXchange with identifier PXD000703.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic cells (DC) can produce Th-polarizing cytokines and direct the class of the adaptive immune response. Microbial stimuli, cytokines, chemokines, and T cell-derived signals all have been shown to trigger cytokine synthesis by DC, but it remains unclear whether these signals are functionally equivalent and whether they determine the nature of the cytokine produced or simply initiate a preprogrammed pattern of cytokine production, which may be DC subtype specific. Here, we demonstrate that microbial and T cell-derived stimuli can synergize to induce production of high levels of IL-12 p70 or IL-10 by individual murine DC subsets but that the choice of cytokine is dictated by the microbial pattern recognition receptor engaged. We show that bacterial components such as CpG-containing DNA or extracts from Mycobacterium tuberculosis predispose CD8alpha(+) and CD8alpha(-)CD4(-) DC to make IL-12 p70. In contrast, exposure of CD8alpha(+), CD4(+) and CD8alpha(-)CD4(-) DC to heat-killed yeasts leads to production of IL-10. In both cases, secretion of high levels of cytokine requires a second signal from T cells, which can be replaced by CD40 ligand. Consistent with their differential effects on cytokine production, extracts from M. tuberculosis promote IL-12 production primarily via Toll-like receptor 2 and an MyD88-dependent pathway, whereas heat-killed yeasts activate DC via a Toll-like receptor 2-, MyD88-, and Toll/IL-1R domain containing protein-independent pathway. These results show that T cell feedback amplifies innate signals for cytokine production by DC and suggest that pattern recognition rather than ontogeny determines the production of cytokines by individual DC subsets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maximally effective concentrations of endothelin-1 (ET-1), acidic FGF (aFGF), or 12-O-tetradecanoylphorbol-13-acetate (TPA) activated mitogen-activated protein kinase (MAPK) by 3-4-fold in crude extracts of myocytes cultured from neonatal rat heart ventricles. Maximal activation was achieved after 5 min. Thereafter, MAPK activity stimulated by ET-1 or aFGF declined to control values within 1-2 h, whereas activation by TPA was more sustained. Two peaks of MAPK activity (a 42- and a 44-kDa MAPK) were resolved in cells exposed to ET-1 or aFGF by fast protein liquid chromatography on a Mono Q column. One major and one minor peak of MAPK kinase (MAPKK) was stimulated by ET-1 or aFGF. Cardiac myocytes expressed protein kinase C (PKC)-alpha, -delta, -epsilon and -zeta as shown immunoblotting. Exposure to 1 microM TPA for 24 h down-regulated PKC-alpha, -delta, and -epsilon, but not PKC-zeta. This maneuver wholly abolished the activation of MAPK on re-exposure to TPA but did not affect the response to aFGF. The effect of ET-1 was partially down-regulated. ET-1 stimulated phospho[3H]inositide hydrolysis 18-fold, whereas aFGF stimulated by only 30%. Agonists which initially utilize dissimilar signaling pathways may therefore converge at the level of MAPKK/MAPK and this may be relevant to the hypertrophic response of the heart.