66 resultados para ORIENTED AGGREGATION
Resumo:
The archaeological site of Kharaneh IV in Jordan's Azraq Basin, and its relatively near neighbour Jilat 6 show evidence of sustained occupation of substantial size through the Early to Middle Epipalaeolithic (c. 24,000 - 15,000 cal BP). Here we review the geomorphological evidence for the environmental setting in which Kharaneh IV was established. The on-site stratigraphy is clearly differentiated from surrounding sediments, marked visually as well as by higher magnetic susceptibility values. Dating and analysis of off-site sediments show that a significant wetland existed at the site prior to and during early site occupation (~ 23,000 - 19,000 BP). This may explain why such a substantial site existed at this location. This wetland dating to the Last Glacial Maximum also provides important information on the palaeoenvironments and potential palaeoclimatic scenarios for today's eastern Jordanian desert, from where such evidence is scarce.
Resumo:
A macroscopically oriented inverse hexagonal phase (HII) of the lipid phytantriol in water is converted to an oriented inverse double diamond bicontinuous cubic phase (QIID). The initial HII phase is uniaxially oriented about the long axis of a capillary with the cylinders parallel to the capillary axis. The HII phase is converted by cooling to a QII D phase which is also highly oriented, where the cylindrical axis of the former phase has been converted to a ⟨110⟩ axis in the latter, as demonstrated by small-angle X-ray scattering. This epitaxial relationship allows us to discriminate between two competing proposed geometric pathways to convert HII to QIID. Our findings also suggest a new route to highly oriented cubic phase coatings, with applications as nanomaterial templates.
Resumo:
Idealized explicit convection simulations of the Met Office Unified Model exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen in other models in previous studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapor field. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy (MSE), following Wing and Emanuel [2014], reveals that the direct radiative feedback (including significant cloud longwave effects) is dominant in both the initial development of self-aggregation and the maintenance of an aggregated state. A low-level circulation at intermediate stages of aggregation does appear to transport MSE from drier to moister regions, but this circulation is mostly balanced by other advective effects of opposite sign and is forced by horizontal anomalies of convective heating (not radiation). Sensitivity studies with either fixed prescribed radiative cooling, fixed prescribed surface fluxes, or both do not show full self-aggregation from homogeneous initial conditions, though fixed surface fluxes do not disaggregate an initialized aggregated state. A sensitivity study in which rain evaporation is turned off shows more rapid self-aggregation, while a run with this change plus fixed radiative cooling still shows strong self-aggregation, supporting a “moisture memory” effect found in Muller and Bony [2015]. Interestingly, self-aggregation occurs even in simulations with sea surface temperatures (SSTs) of 295 K and 290 K, with direct radiative feedbacks dominating the budget of MSE variance, in contrast to results in some previous studies.
Resumo:
Mesoporous metal structures featuring a bicontinuous cubic morphology have a wide range of potential applications and novel opto-electronic properties, often orientation-dependent. We describe the production of nanostructured metal films 1–2 microns thick featuring 3D-periodic ‘single diamond’ morphology that show high out-of-plane alignment, with the (111) plane oriented parallel to the substrate. These are produced by electrodeposition of platinum through a lipid cubic phase (QII) template. Further investigation into the mechanism for the orientation revealed the surprising result that the QII template, which is tens of microns thick, is polydomain with no overall orientation. When thicker platinum films are grown, they also show increased orientational disorder. These results suggest that polydomain QII samples display a region of uniaxial orientation at the lipid/substrate interface up to approximately 2.8 ± 0.3 μm away from the solid surface. Our approach gives previously unavailable information on the arrangement of cubic phases at solid interfaces, which is important for many applications of QII phases. Most significantly, we have produced a previously unreported class of oriented nanomaterial, with potential applications including metamaterials and lithographic masks.
Resumo:
Lack of access to insurance exacerbates the impact of climate variability on smallholder famers in Africa. Unlike traditional insurance, which compensates proven agricultural losses, weather index insurance (WII) pays out in the event that a weather index is breached. In principle, WII could be provided to farmers throughout Africa. There are two data-related hurdles to this. First, most farmers do not live close enough to a rain gauge with sufficiently long record of observations. Second, mismatches between weather indices and yield may expose farmers to uncompensated losses, and insurers to unfair payouts – a phenomenon known as basis risk. In essence, basis risk results from complexities in the progression from meteorological drought (rainfall deficit) to agricultural drought (low soil moisture). In this study, we use a land-surface model to describe the transition from meteorological to agricultural drought. We demonstrate that spatial and temporal aggregation of rainfall results in a clearer link with soil moisture, and hence a reduction in basis risk. We then use an advanced statistical method to show how optimal aggregation of satellite-based rainfall estimates can reduce basis risk, enabling remotely sensed data to be utilized robustly for WII.
Resumo:
The goal of this chapter is to lay out the central themes of heritage language acquisition research adopting a formal/theoretical linguistic perspective. Specifically, we aim to provide a detailed discussion of the nature of heritage language grammars. In doing so, we will address the debates on how to explain heritage speaker competence differences from monolingual baselines and more. This chapter will not be limited to discussions of Spanish as a heritage language, but rather will highlight the important role that Spanish has played and will continue to play in the development of heritage language acquisition studies. Finally, we will offer some comments/insights on how the information covered regarding the formal linguistic properties of heritage speaker knowledge should be considered for and implemented in heritage language pedagogies and thus dealing with heritage speakers in the classroom setting.