79 resultados para OFFSPRING
Resumo:
The mammalian placenta exhibits striking interspecific morphological variation, yet the implications of such diversity for reproductive strategies and fetal development remain obscure. More invasive hemochorial placentas, in which fetal tissues directly contact the maternal blood supply, are believed to facilitate nutrient transfer, resulting in higher fetal growth rates, and to be a state of relative fetal advantage in the evolution of maternal-offspring conflict. The extent of interdigitation between maternal and fetal tissues has received less attention than invasiveness but is also potentially important because it influences the surface area for exchange. We show that although increased placental invasiveness and interdigitation are both associated with shorter gestations, interdigitation is the key variable. Gestation times associated with highly interdigitated labyrinthine placentas are 44% of those associated with less interdigitated villous and trabecular placentas. There is, however, no relationship between placental traits and neonatal body and brain size. Hence, species with more interdigitated placentas produce neonates of similar body and brain size but in less than half the time. We suggest that the effects of placental interdigitation on growth rates and the way that these are traded off against gestation length may be promising avenues for understanding the evolutionary dynamics of parentoffspring conflict. Keywords: placenta, parent-offspring conflict, life history, brain evolution, reproductive strategies, gestation.
Resumo:
1. Bees are one of the most important groups of pollinators in the temperate zone. Although heavy metal pollution is recognised to be a problem affecting large parts of the European Union, we currently lack insights into the effects of heavy metals on wild bee survival and reproduction. 2. We investigated the impact of heavy metal pollution on the wild bee Osmia rufa (Hymenoptera: Megachilidae) by comparing their survival, reproduction and population dynamics along two independent gradients of heavy metal pollution, one in Poland and the other in the United Kingdom. We used trap nests to evaluate the response of fitness and survival parameters of O. rufa. To quantify the levels of pollution, we directly measured the heavy metal concentration in provisions collected by O. rufa. 3. We found that with increasing heavy metal concentration, there was a steady decrease in number of brood cells constructed by females and an increase in the proportion of dead offspring. In the most polluted site, there were typically 3–4 cells per female with 50–60% dead offspring, whereas in unpolluted sites there were 8 to 10 cells per female and only 10–30% dead offspring. Moreover, the bee population growth rate (R0) decreased along the heavy metal pollution gradients. In unpolluted sites, R0 was above 1, whereas in contaminated sites, the values tended to be below 1. 4. Our findings reveal a negative relationship between heavy metal pollution and several fitness parameters of the wild bee O. rufa, and highlight a mechanism whereby the detrimental effects of heavy metal pollution may severely impact wild bee communities.
Resumo:
Erythropoietic protoporphyria (EPP) is associated with a deficiency of protohaem ferrolyase. We have used a novel assay for this enzyme based on its ability to utilize zinc as a substrate to investigate the inheritance of EPP in nine affected families. Zinc chelatase activity was markedly reduced in peripheral blood mononuclear cells from 14 EPP patients (mean, 3.3 nmol Zn protohaem/h/mg protein; range, 0.3-8.0) when compared with 41 controls (16.8 +/- 3.6) p less than 0.01. In three families with parent-to-child transmission of disease, the asymptomatic parent had an enzymatic activity within the normal range. In three pedigrees where the parents were asymptomatic, enzymatic activities were below the 95% confidence limits in both. Zinc chelatase activity was below the mean control value in 17 of the 18 parents in nine affected pedigrees, and six of seven asymptomatic offspring of patients with protoporphyria. The findings suggest that EPP is not transmitted as a simple dominant trait and that inheritance of more than one gene may be required for disease expression.
Resumo:
We report evidence that helps resolve two competing explanations for stability in the mutualism between Ficus racemosa fig trees and the Ceratosolen fusciceps wasps that pollinate them. The wasps lay eggs in the tree's ovules, with each wasp larva developing at the expense of a fig seed. Upon maturity, the female wasps collect pollen and disperse to a new tree, continuing the cycle. Fig fitness is increased by producing both seeds and female wasps, whereas short-term wasp fitness increases only with more wasps, thereby resulting in a conflict of interests. We show experimentally that wasps exploit the inner layers of ovules first (the biased oviposition explanation), which is consistent with optimal-foraging theory. As oviposition increases, seeds in the middle layer are replaced on a one-to-one basis by pollinator offspring, which is also consistent with biased oviposition. Finally, in the outer layer of ovules, seeds disappear but are only partially replaced by pollinator offspring, which suggests high wasp mortality (the biased survival or ‘unbeatable seeds’ explanation). Our results therefore suggest that both biased oviposition and biased survival ensure seed production, thereby stabilizing the mutualism. We further argue that biased oviposition can maintain biased survival by selecting against wasp traits to overcome fig defenses. Finally, we report evidence suggesting that F. racemosa balances seed and wasp production at the level of the tree. Because figs are probably selected to allocate equally to male and female function, a 1:1 seed:wasp ratio suggests that fig trees are in control of the mutualism.
Resumo:
Historical narratives help construct social identities, which are maintained through differentiation between in-groups and "others." In this article, we contend that Fatima Besnaci-Lancou's texts, as well as her reconciliation work—in which she enjoins Beurs and Harkis' offspring to write a new, inclusive, polyphonic narrative of the Algerian War—are an example of the positive use of textually mediated identity (re)construction. Her work suggests the possibility of implementing a moderate politics of empathetic recognition of the (often migration-related) memories of "others" so as to reinforce French national belongingness.
Resumo:
1. Pollinating insects provide crucial and economically important ecosystem services to crops and wild plants, but pollinators, particularly bees, are globally declining as a result of various driving factors, including the prevalent use of pesticides for crop protection. Sublethal pesticide exposure negatively impacts numerous pollinator lifehistory traits, but its influence on reproductive success remains largely unknown. Such information is pivotal, however, to our understanding of the long-term effects on population dynamics. 2 We investigated the influence of field-realistic trace residues of the routinely used neonicotinoid insecticides thiamethoxam and clothianidin in nectar substitutes on the entire life-time fitness performance of the red mason bee Osmia bicornis. 3 We show that chronic, dietary neonicotinoid exposure has severe detrimental effects on solitary bee reproductive output. Neonicotinoids did not affect adult bee mortality; however, monitoring of fully controlled experimental populations revealed that sublethal exposure resulted in almost 50% reduced total offspring production and a significantly male-biased offspring sex ratio. 4 Our data add to the accumulating evidence indicating that sublethal neonicotinoid effects on non-Apis pollinators are expressed most strongly in a rather complex, fitness-related context. Consequently, to fully mitigate long-term impacts on pollinator population dynamics, present pesticide risk assessments need to be expanded to include whole life-cycle fitness estimates, as demonstrated in the present study using O. bicornis as a model.
Resumo:
Epigenetic modification of the genome via cytosine methylation is a dynamic process that responds to changes in the growing environment. This modification can also be heritable. The combination of both properties means that there is the potential for the life experiences of the parental generation to modify the methylation profiles of their offspring and so potentially to ‘pre-condition’ them to better accommodate abiotic conditions encountered by their parents. We recently identified high vapor pressure deficit (vpd)-induced DNA methylation at two gene loci in the stomatal development pathway and an associated reduction in leaf stomatal frequency.1 Here, we test whether this epigenetic modification pre-conditioned parents and their offspring to the more severe water stress of periodic drought. We found that three generations of high vpd-grown plants were better able to withstand periodic drought stress over two generations. This resistance was not directly associated with de novo methylation of the target stomata genes, but was associated with the cmt3 mutant’s inability to maintain asymmetric sequence context methylation. If our finding applies widely, it could have significant implications for evolutionary biology and breeding for stressful environments.
Resumo:
In mammals, the mass-specific rate of biomass production during gestation and lactation, here called maternal productivity, has been shown to vary with body size and lifestyle. Metabolic theory predicts that post-weaning growth of offspring, here termed juvenile productivity, should be higher than maternal productivity, and juveniles of smaller species should be more productive than those of larger species. Furthermore because juveniles generally have similar lifestyles to their mothers, across species juvenile and maternal productivities should be correlated. We evaluated these predictions with data from 270 species of placental mammals in 14 taxonomic/lifestyle groups. All three predictions were supported. Lagomorphs, perissodactyls and artiodactyls were very productive both as juveniles and as mothers as expected from the abundance and reliability of their foods. Primates and bats were unproductive as juveniles and as mothers, as expected as an indirect consequence of their low predation risk and consequent low mortality. Our results point the way to a mechanistic explanation for the suite of correlated life-history traits that has been called the slow–fast continuum.
Resumo:
Transgenerational inheritance of abiotic stress-induced epigenetic modifications in plants has potential adaptive significance and might condition the offspring to improve the response to the same stress, but this is at least partly dependent on the potency, penetrance and persistence of the transmitted epigenetic marks. We examined transgenerational inheritance of low Relative Humidity-induced DNA methylation for two gene loci in the stomatal developmental pathway in Arabidopsis thaliana and the abundance of associated short-interfering RNAs (siRNAs). Heritability of low humidity-induced methylation was more predictable and penetrative at one locus (SPEECHLESS, entropy ≤ 0.02; χ2 < 0.001) than the other (FAMA, entropy ≤ 0.17; χ2 ns). Methylation at SPEECHLESS correlated positively with the continued presence of local siRNAs (r2 = 0.87; p = 0.013) which, however, could be disrupted globally in the progeny under repeated stress. Transgenerational methylation and a parental low humidity-induced stomatal phenotype were heritable, but this was reversed in the progeny under repeated treatment in a previously unsuspected manner.
Resumo:
Interest in sustainable farming methods that rely on alternatives to conventional synthetic fertilizers and pesticides is increasing. Sustainable farming methods often utilize natural populations of predatory and parasitic species to control populations of herbivores, which may be potential pest species. We investigated the effects of several types of fertilizer, including those typical of sustainable and conventional farming systems, on the interaction between a herbivore and parasitoid. The effects of fertilizer type on percentage parasitism, parasitoid performance, parasitoid attack behaviour and responses to plant volatiles were examined using a model Brassica system, consisting of Brassica oleracea var capitata, Plutella xylostella (Lepidoptera) larvae and Cotesia vestalis (parasitoid). Percentage parasitism was greatest for P. xylostella larvae feeding on plants that had received either a synthetic ammonium nitrate fertilizer or were unfertilized, in comparison to those receiving a composite fertilizer containing hoof and horn. Parasitism was intermediate on plants fertilized with an organically produced animal manure. Male parasitoid tibia length showed the same pattern as percentage parasitism, an indication that offspring performance was maximized on the treatments preferred by female parasitoids for oviposition. Percentage parasitism and parasitoid size were not correlated with foliar nitrogen concentration. The parasitoids did not discriminate between hosts feeding on plants in the four fertilizer treatments in parasitoid behaviour assays, but showed a preference for unfertilized plants in olfactometer experiments. The percentage parasitism and tibia length results provide support for the preference–performance hypothesis
Resumo:
Parental behaviors, most notably overcontrol, lack of warmth and expressed anxiety, have been implicated in models of the development and maintenance of anxiety disorders in children and young people. Theories of normative development have proposed that different parental responses are required to support emotional development in childhood and adolescence, yet age has not typically been taken into account in studies of parenting and anxiety disorders. In order to identify whether associations between anxiety disorder status and parenting differ in children and adolescents, we compared observed behaviors of parents of children (7–10 years) and adolescents (13–16 years) with and without anxiety disorders (n=120), while they undertook a series of mildly anxiety-provoking tasks. Parents of adolescents showed significantly lower levels of expressed anxiety, intrusiveness and warm engagement than parents of children. Furthermore, offspring age moderated the association between anxiety disorder status and parenting behaviors. Specifically, parents of adolescents with anxiety disorders showed higher intrusiveness and lower warm engagement than parents of non-anxious adolescents. A similar relationship between these parenting behaviors and anxiety disorder status was not observed among parents of children. The findings suggest that theoretical accounts of the role of parental behaviors in anxiety disorders in children and adolescents should distinguish between these different developmental periods. Further experimental research to establish causality, however, would be required before committing additional resources to targeting parenting factors within treatment.
Resumo:
There is strong evidence from animal studies that prenatal stress has different effects on male and female offspring. In general, although not always, prenatal stress increases anxiety, depression and stress responses, both hypothalamic–pituitary–adrenal and cardiovascular, in female offspring rather than in male. Males are more likely to show learning and memory deficits. There have been few studies so far in humans which differentiate effects of prenatal stress on male and female psychopathology. Some studies support the animal models, but the evidence is inconsistent. The mediating mechanisms for any sex specific effects are little understood, but there is evidence that placental function can differ depending on the sex of the fetus. We suggest that there may be an evolutionary reason for any sex differences in the long term effects of prenatal stress. In a stressful environment it may be adaptive for females, who are more likely to stay in one place and look after children, to be more vigilant, alert to danger and thus show more stress responsiveness. This can give rise to a more anxious or depressed phenotype. With males it may be more adaptive to go out and explore new environments, compete with other males, and be more aggressive. For this it may help to be less responsive to external stressors. More research is needed into sex differences in the effects of prenatal stress in humans, to test these ideas.
Resumo:
Parents have large genetic and environmental influences on offspring’s cognition, behavior, and brain. These intergenerational effects are observed in mood disorders, with particularly robust association in depression between mothers and daughters. No studies have thus far examined the neural bases of these intergenerational effects in humans. Corticolimbic circuitry is known to be highly relevant in a wide range of processes including mood regulation and depression. These findings suggest that corticolimbic circuitry may also show matrilineal transmission patterns. We therefore examined human parent-offspring association in this neurocircuitry, and investigated the degree of association in gray matter volume between parent and offspring. We used voxel-wise correlation analysis in a total of 35 healthy families, consisting of parents and their biological offspring. We found positive associations of regional grey matter volume in the corticolimbic circuit including the amygdala, hippocampus, anterior cingulate cortex, and ventromedial prefrontal cortex between biological mothers and daughters. This association was significantly greater than mother-son, father-daughter, and father-son associations. The current study suggests that the corticolimbic circuitry, which has been implicated in mood regulation, shows a matrilineal specific transmission patterns. Our preliminary findings are consistent with what has been found behaviorally in depression, and may have clinical implications for disorders known to have dysfunction in mood regulation such as depression. Studies such as ours will likely bridge animal work examining gene expression in the brains and clinical symptom-based observations, and provide promising ways to investigate intergenerational transmission patterns in the human brain.
Resumo:
The theory of evolution by sexual selection for sexual size dimorphism (SSD) postulates that SSD primarily reflects the adaptation of males and females to their different reproductive roles. For example, competition among males for access to females increases male body size because larger males are better able to maintain dominant status than smaller males. Larger dominant males sire most offspring while smaller subordinate males are unsuccessful, leading to skew in reproductive success. Therefore, species with male-biased SSD are predicted to have greater variance in male reproductive success than those in which both sexes are similar in size. We tested this prediction among the Pinnipedia, a mammalian group with a great variation in SSD. From a literature review, we identified genetic estimates of male reproductive success for 10 pinniped taxa (eight unique species and two subspecies of a ninth species) that range from seals with similarly sized males and females to species in which males are more than four times as large as females. We found no support for a positive relationship between variance in reproductive success and SSD among pinnipeds after excluding the elephant seals Mirounga leonina and Mirounga angustirostris, which we discuss as distinctive cases. Several explanations for these results are presented, including the revival of one of Darwin's original ideas. Darwin proposed that natural selection may explain SSD based on differences in energetic requirements between sexes and the potential for sexual niche segregation. Males may develop larger bodies to exploit resources that remain unavailable to females due to the energetic constraints imposed on female mammals by gestation and lactation. The importance of this alternative explanation remains to be tested.
Resumo:
Recent work in animals suggests that the extent of early tactile stimulation by parents of offspring is an important element in early caregiving. We evaluate the psychometric properties of a new parent-report measure designed to assess frequency of tactile stimulation across multiple caregiving domains in infancy. We describe the full item set of the Parent-Infant Caregiving Touch Scale (PICTS) and, using data from a UK longitudinal Child Health and Development Study, the response frequencies and factor structure and whether it was invariant over two time points in early development (5 and 9 weeks). When their infant was 9 weeks old, 838 mothers responded on the PICTS while a stratified subsample of 268 mothers completed PICTS at an earlier 5 week old assessment (229 responded on both occasions). Three PICTS factors were identified reflecting stroking, holding and affective communication. These were moderately to strongly correlated at each of the two time points of interest and were unrelated to, and therefore distinct from, a traditional measure of maternal sensitivity at 7-months. A wholly stable psychometry over 5 and 9-week assessments was not identified which suggests that behavior profiles differ slightly for younger and older infants. Tests of measurement invariance demonstrated that all three factors are characterized by full configural and metric invariance, as well as a moderate degree of evidence of scalar invariance for the stroking factor. We propose the PICTS as a valuable new measure of important aspects of caregiving in infancy.