76 resultados para Nutrient loading
Resumo:
BACKGROUND: Differences in the interindividual response to dietary intervention could be modified by genetic variation in nutrient-sensitive genes. OBJECTIVE: This study examined single nucleotide polymorphisms (SNPs) in presumed nutrient-sensitive candidate genes for obesity and obesity-related diseases for main and dietary interaction effects on weight, waist circumference, and fat mass regain over 6 mo. DESIGN: In total, 742 participants who had lost ≥ 8% of their initial body weight were randomly assigned to follow 1 of 5 different ad libitum diets with different glycemic indexes and contents of dietary protein. The SNP main and SNP-diet interaction effects were analyzed by using linear regression models, corrected for multiple testing by using Bonferroni correction and evaluated by using quantile-quantile (Q-Q) plots. RESULTS: After correction for multiple testing, none of the SNPs were significantly associated with weight, waist circumference, or fat mass regain. Q-Q plots showed that ALOX5AP rs4769873 showed a higher observed than predicted P value for the association with less waist circumference regain over 6 mo (-3.1 cm/allele; 95% CI: -4.6, -1.6; P/Bonferroni-corrected P = 0.000039/0.076), independently of diet. Additional associations were identified by using Q-Q plots for SNPs in ALOX5AP, TNF, and KCNJ11 for main effects; in LPL and TUB for glycemic index interaction effects on waist circumference regain; in GHRL, CCK, MLXIPL, and LEPR on weight; in PPARC1A, PCK2, ALOX5AP, PYY, and ADRB3 on waist circumference; and in PPARD, FABP1, PLAUR, and LPIN1 on fat mass regain for dietary protein interaction. CONCLUSION: The observed effects of SNP-diet interactions on weight, waist, and fat mass regain suggest that genetic variation in nutrient-sensitive genes can modify the response to diet. This trial was registered at clinicaltrials.gov as NCT00390637.
Resumo:
The emerging discipline of urban ecology is shifting focus from ecological processes embedded within cities to integrative studies of large urban areas as biophysical-social complexes. Yet this discipline lacks a theory. Results from the Baltimore Ecosystem Study, part of the Long Term Ecological Research Network, expose new assumptions and test existing assumptions about urban ecosystems. The findings suggest a broader range of structural and functional relationships than is often assumed for urban ecological systems. We address the relationships between social status and awareness of environmental problems, and between race and environmental hazard. We present patterns of species diversity, riparian function, and stream nitrate loading. In addition, we probe the suitability of land-use models, the diversity of soils, and the potential for urban carbon sequestration. Finally, we illustrate lags between social patterns and vegetation, the biogeochemistry of lawns, ecosystem nutrient retention, and social-biophysical feedbacks. These results suggest a framework for a theory of urban ecosystems.
Resumo:
BACKGROUND: Under-nutrition in older adults is widespread. Oral nutritional supplement beverages (ONS) are prescribed, yet consumption by older people is often insufficient. A variety of supplement formats may improve nutrient intake. This study developed protein and micro-nutrient fortified biscuits and evaluated their sensory attributes and liking by older people. Two micro-nutrient strategies were taken, to match typical ONS and to customise to the needs of older people. RESULTS: Oat biscuits and gluten-free biscuits developed contained over 12% protein and over 460 kcal 100 g-1 . Two small (40 g) biscuits developed to match ONS provided approximately 40% of an ONS portion of micro-nutrients and 60% of macro-nutrients; however, the portion size was considered realistic whereas the average ONS portion (200 mL) is excessive. Biscuits developed to the needs of older adults provided, on average, 18% of the reference nutrient intake of targeted micro-nutrients. Sensory characteristics were similar between biscuits with and without micro-nutrient fortification, leading to no differences in liking. Fortified oat biscuits were less liked than commercial oat biscuits, partly attributed to flavour imparted by whey protein fortification. CONCLUSION: Macro- and micro-nutrient fortification of biscuits could provide an alternative fortified snack to help alleviate malnutrition in older adults.
Resumo:
Monitoring nutritional intake is an important aspect of the care of older people, particularly for those at risk of malnutrition. Current practice for monitoring food intake relies on hand written food charts that have several inadequacies. We describe the design and validation of a tool for computer-assisted visual assessment of patient food and nutrient intake. To estimate food consumption, the application compares the pixels the user rubbed out against predefined graphical masks. Weight of food consumed is calculated as a percentage of pixels rubbed out against pixels in the mask. Results suggest that the application may be a useful tool for the conservative assessment of nutritional intake in hospitals.
Resumo:
The application of the Water Framework Directive (WFD) in the European Union (EU) targets certain threshold levels for the concentration of various nutrients, nitrogen and phosphorous being the most important. In the EU, agri-environmental measures constitute a significant component of Pillar 2—Rural Development Policies in both financial and regulatory terms. Environmental measures also are linked to Pillar 1 payments through cross-compliance and the greening proposals. This paper drawing from work carried out in the REFRESH FP7 project aims to show how an INtegrated CAtchment model of plant/soil system dynamics and instream biogeochemical and hydrological dynamics can be used to assess the cost-effectiveness of agri-environmental measures in relation to nutrient concentration targets set by the WFD, especially in the presence of important habitats. We present the procedures (methodological steps, challenges and problems) for assessing the cost-effectiveness of agri-environmental measures at the baseline situation, and climate and land use change scenarios. Furthermore, we present results of an application of this methodology to the Louros watershed in Greece and discuss the likely uses and future extensions of the modelling approach. Finally, we attempt to reveal the importance of this methodology for designing and incorporating alternative environmental practices in Pillar 1 and 2 measures.
Resumo:
There are potential nutritional and sensory benefits of adding sauces to hospital meals. The aim of this study was to develop nutrient fortified sauces with acceptable sensory properties suitable for older people at risk of under-nutrition. Tomato, gravy and white sauce were fortified with macro and micro-nutrients using food ingredients rich in energy and protein as well as vitamin and mineral premixes. Sensory profile was assessed by a trained panel. Hedonic liking of fortified compared with standard sauces was evaluated by healthy older volunteers. The fortified sauces had higher nutritional value than the conventional ones, for example the energy content of the fortified tomato, white sauce and gravy formulations were increased between 2.5 and 4 fold compared to their control formulations. Healthy older consumers preferred the fortified tomato sauce compared with unfortified. There were no significant differences in liking between the fortified and standard option for gravy. There were limitations in the extent of fortification with protein, potassium and magnesium, as excessive inclusion resulted in bitterness, undesired flavours or textural issues. This was particularly marked in the white sauce to the extent that their sensory characteristics were not sufficiently optimised for hedonic testing. It is proposed that the development of fortified sauces is a simple approach to improving energy intake for hospitalised older people, both through the nutrient composition of the sauce itself and due to the benefits of increasing sensorial taste and lubrication in the mouth.
Resumo:
The Mar Menor is a coastal lagoon increasingly threatened by urban and agricultural pressures. The main watercourse draining into the lagoon is the Rambla del Albujón. A fortnightly campaign carried out over one annual cycle enabled us to characterize the treated urban sewage effluents and agricultural sources which contribute to the nutrient fluxes in the watercourse. Multivariate analysis provided information for establishing chemical signatures and for assessing the relative influence of the various sources on the water quality at the outlet. Mass balances were used to examine net gains and losses, and cross-correlations with rainfall to analyze climatic influence and control factors in the trends of the nutrient flux. The rainfall pattern was significantly cross-correlated with nitrate and phosphorus fluxes from agricultural sources, while fluctuations in the resident population explained the phosphorus flux trend in urban sources. 50% of dissolved inorganic nitrogen was from agricultural sources, while 70% of total phosphate and 91% of total organic carbon were from urban point sources. The net amounts of all the nutrients fell as a result of plant uptake and/or denitrification in the channel. The control of urban point sources (phosphorus-enriched) is suggested as a promptly action for improving the health of the coastal lagoon.
Resumo:
Aims: To understand effects of tissue type, growth stage and soil fertilisers on bacterial endophyte communities of winter wheat (Triticum aestivum cv. Hereward). Methods: Endophytes were isolated from wheat grown under six fertiliser conditions in the long term Broadbalk Experiment at Rothamsted Research, UK. Samples were taken in May and July from root and leaf tissues. Results: Root and leaf communities differed in abundance and composition of endophytes. Endophytes were most abundant in roots and the Proteobacteria were most prevalent. In contrast, Firmicutes and Actinobacteria, the Gram positive phyla, were most prevalent in the leaves. Both fertiliser treatment and sample time influenced abundance and relative proportions of each phylum and genus in the endosphere. A higher density of endophytes was found in the Nil input treatment plants. Conclusions: Robust isolation techniques and stringent controls are critical for accurate recovery of endophytes. The plant tissue type, plant growth stage, and soil fertiliser treatment all contribute to the composition of the endophytic bacterial community in wheat. These results should help facilitate targeted development of endophytes for beneficial applications in agriculture.
Resumo:
Background Pine bark is a rich source of phytochemical compounds including tannins, phenolic acids, anthocyanins, and fatty acids. These phytochemicals have potential to significantly impact on animal health and animal production. The goal of this work is to measure the effects of tannins in ground pine bark as a partial feed replacement on feed intake, dietary apparent digestibility, nitrogen balance, and mineral retention in meat goats. Results Eighteen Kiko cross goats (initial BW = 31.8 ± 1.49 kg) were randomly assigned to three treatment groups (n = 6). Dietary treatments were tested: control (0 % pine bark powder (PB) and 30 % wheat straw (WS)); 15 % PB and 15 % WS, and 30 % PB and 0 % WS. Although dry matter (DM) intake and digestibility were not affected (P > 0.10) by feeding PB, neutral detergent fiber (linear; P = 0.01), acid detergent fiber (linear; P = 0.001) and lignin digestibility (linear; P = 0.01) decreased, and crude protein (CP) digestibility tended to decrease (P = 0.09) as PB increased in the diet, apparent retention of Ca (P = 0.09), P (P = 0.03), Mg (P = 0.01), Mn (P = 0.01), Zn (P = 0.01) and Fe (P = 0.09) also increased linearly. Nitrogen intake and fecal N excretion were not affected (P > 0.05) by addition of PB in the diet, but N balance in the body was quadratically increased (P < 0.01) in the 15 % PB diet compared to other diets. This may be due to more rumen escape protein and less excreted N in the urine with the 15 % PB diet. The study showed that a moderate level of tannin-containing pine bark supplementation could improve gastrointestinal nitrogen balance with the aim of improving animal performance. Conclusion These results suggest that tannin-containing PB has negative impact on fiber, lignin, and protein digestibility, but positively impacted on N-balance.
Resumo:
Improved nutrient utilization efficiency is strongly related to enhanced economic performance and reduced environmental footprint of dairy farms. Pasture-based systems are widely used for dairy production in certain areas of the world, but prediction equations of fresh grass nutritive value (nutrient digestibility and energy concentrations) are limited. Equations to predict digestible energy (DE) and metabolizable energy (ME) used for grazing cattle have been either developed with cattle fed conserved forage and concentrate diets or sheep fed previously frozen grass, and the majority of them require measurements less commonly available to producers, such as nutrient digestibility. The aim of the present study was therefore to develop prediction equations more suitable to grazing cattle for nutrient digestibility and energy concentrations, which are routinely available at farm level by using grass nutrient contents as predictors. A study with 33 nonpregnant, nonlactating cows fed solely fresh-cut grass at maintenance energy level for 50 wk was carried out over 3 consecutive grazing seasons. Freshly harvested grass of 3 cuts (primary growth and first and second regrowth), 9 fertilizer input levels, and contrasting stage of maturity (3 to 9 wk after harvest) was used, thus ensuring a wide representation of nutritional quality. As a result, a large variation existed in digestibility of dry matter (0.642-0.900) and digestible organic matter in dry matter (0.636-0.851) and in concentrations of DE (11.8-16.7 MJ/kg of dry matter) and ME (9.0-14.1 MJ/kg of dry matter). Nutrient digestibilities and DE and ME concentrations were negatively related to grass neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents but positively related to nitrogen (N), gross energy, and ether extract (EE) contents. For each predicted variable (nutrient digestibilities or energy concentrations), different combinations of predictors (grass chemical composition) were found to be significant and increase the explained variation. For example, relatively higher R(2) values were found for prediction of N digestibility using N and EE as predictors; gross-energy digestibility using EE, NDF, ADF, and ash; NDF, ADF, and organic matter digestibilities using N, water-soluble carbohydrates, EE, and NDF; digestible organic matter in dry matter using water-soluble carbohydrates, EE, NDF, and ADF; DE concentration using gross energy, EE, NDF, ADF, and ash; and ME concentration using N, EE, ADF, and ash. Equations presented may allow a relatively quick and easy prediction of grass quality and, hence, better grazing utilization on commercial and research farms, where nutrient composition falls within the range assessed in the current study.
Resumo:
It is known that roots can respond to patches of fertility; however, root proliferation is often too slow to exploit resources fully, and organic nutrient patches may be broken down and leached, immobilized or chemically fixed before they are invaded by the root system. The ability of fungal hyphae to exploit resource patches is far greater than that of roots due to their innate physiological and morphological plasticity, which allows comprehensive exploration and rapid colonization of resource patches in soils. The fungal symbionts of ectomycorrhizal plants excrete significant quantities of enzymes such as chitinases, phosphatases and proteases. These might allow the organic residue to be tapped directly for nutrients such as N and P. Pot experiments conducted with nutrient-stressed ectomycorrhizal and control willow plants showed that when high quality organic nutrient patches were added, they were colonized rapidly by the ectomycorrhizal mycelium. These established willows (0.5 m tall) were colonized by Hebeloma syrjense P. Karst. for 1 year prior to nutrient patch addition. Within days after patch addition, colour changes in the leaves of the mycorrhizal plants (reflecting improved nutrition) were apparent, and after I month the concentration of N and P in the foliage of mycorrhizal plants was significantly greater than that in non-mycorrhizal plants subject to the same nutrient addition. It seems likely that the mycorrhizal plants were able to compete effectively with the wider soil microbiota and tap directly into the high quality organic resource patch via their extra-radical mycelium. We hypothesize that ectomycorrhizal plants may reclaim some of the N and P invested in seed production by direct recycling from failed seeds in the soil. The rapid exploitation of similar discrete, transient, high-quality nutrient patches may have led to underestimations when determining the nutritional benefits of ectomycorrhizal colonization.
Resumo:
The small G protein Ras has been implicated in hypertrophy of cardiac myocytes. We therefore examined the activation (GTP loading) of Ras by the following hypertrophic agonists: phorbol 12-myristate 13-acetate (PMA), endothelin-1 (ET-1), and phenylephrine (PE). All three increased Ras.GTP loading by 10-15-fold (maximal in 1-2 min), as did bradykinin. Other G protein-coupled receptor agonists (e.g. angiotensin II, carbachol, isoproterenol) were less effective. Activation of Ras by PMA, ET-1, or PE was reduced by inhibition of protein kinase C (PKC), and that induced by ET-1 or PE was partly sensitive to pertussis toxin. 8-(4-Chlorophenylthio)-cAMP (CPT-cAMP) did not inhibit Ras.GTP loading by PMA, ET-1, or PE. The association of Ras with c-Raf protein was increased by PMA, ET-1, or PE, and this was inhibited by CPT-cAMP. However, only PMA and ET-1 increased Ras-associated mitogen-activated protein kinase kinase 1-activating activity, and this was decreased by PKC inhibition, pertussis toxin, and CPT-cAMP. PMA caused the rapid appearance of phosphorylated (activated) extracellular signal-regulated kinase in the nucleus, which was inhibited by a microinjected neutralizing anti-Ras antibody. We conclude that PKC- and Gi-dependent mechanisms mediate the activation of Ras in myocytes and that Ras activation is required for stimulation of extracellular signal-regulated kinase by PMA.