82 resultados para Night and Day
Resumo:
The effect of stratospheric radiative damping time scales on stratospheric variability and on stratosphere–troposphere coupling is investigated in a simplified global circulation model by modifying the vertical profile of radiative damping in the stratosphere while holding it fixed in the troposphere. Perpetual-January conditions are imposed, with sinusoidal topography of zonal wavenumber 1 or 2. The depth and duration of the simulated sudden stratospheric warmings closely track the lower-stratospheric radiative time scales. Simulations with the most realistic profiles of radiative damping exhibit extended time-scale recoveries analogous to polar-night jet oscillation (PJO) events, which are observed to follow sufficiently deep stratospheric warmings. These events are characterized by weak lower-stratospheric winds and enhanced stability near the tropopause, which persist for up to 3 months following the initial warming. They are obtained with both wave-1 and wave-2 topography. Planetary-scale Eliassen–Palm (EP) fluxes entering the vortex are also suppressed, which is in agreement with observed PJO events. Consistent with previous studies, the tropospheric jets shift equatorward in response to the warmings. The duration of the shift is closely correlated with the period of enhanced stability. The magnitude of the shift in these runs, however, is sensitive only to the zonal wavenumber of the topography. Although the shift is sustained primarily by synoptic-scale eddies, the net effect of the topographic form drag and the planetary-scale fluxes is not negligible; they damp the surface wind response but enhance the vertical shear. The tropospheric response may also reduce the generation of planetary waves, further extending the stratospheric dynamical time scales.
Resumo:
We have incorporated a semi-mechanistic isoprene emission module into the JULES land-surface scheme, as a first step towards a modelling tool that can be applied for studies of vegetation – atmospheric chemistry interactions, including chemistry-climate feedbacks. Here, we evaluate the coupled model against local above-canopy isoprene emission flux measurements from six flux tower sites as well as satellite-derived estimates of isoprene emission over tropical South America and east and south Asia. The model simulates diurnal variability well: correlation coefficients are significant (at the 95 % level) for all flux tower sites. The model reproduces day-to-day variability with significant correlations (at the 95 % confidence level) at four of the six flux tower sites. At the UMBS site, a complete set of seasonal observations is available for two years (2000 and 2002). The model reproduces the seasonal pattern of emission during 2002, but does less well in the year 2000. The model overestimates observed emissions at all sites, which is partially because it does not include isoprene loss through the canopy. Comparison with the satellite-derived isoprene-emission estimates suggests that the model simulates the main spatial patterns, seasonal and inter-annual variability over tropical regions. The model yields a global annual isoprene emission of 535 ± 9 TgC yr−1 during the 1990s, 78 % of which from forested areas.
Resumo:
Sea surface temperature (SST) can be estimated from day and night observations of the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) by optimal estimation (OE). We show that exploiting the 8.7 μm channel, in addition to the “traditional” wavelengths of 10.8 and 12.0 μm, improves OE SST retrieval statistics in validation. However, the main benefit is an improvement in the sensitivity of the SST estimate to variability in true SST. In a fair, single-pixel comparison, the 3-channel OE gives better results than the SST estimation technique presently operational within the Ocean and Sea Ice Satellite Application Facility. This operational technique is to use SST retrieval coefficients, followed by a bias-correction step informed by radiative transfer simulation. However, the operational technique has an additional “atmospheric correction smoothing”, which improves its noise performance, and hitherto had no analogue within the OE framework. Here, we propose an analogue to atmospheric correction smoothing, based on the expectation that atmospheric total column water vapour has a longer spatial correlation length scale than SST features. The approach extends the observations input to the OE to include the averaged brightness temperatures (BTs) of nearby clear-sky pixels, in addition to the BTs of the pixel for which SST is being retrieved. The retrieved quantities are then the single-pixel SST and the clear-sky total column water vapour averaged over the vicinity of the pixel. This reduces the noise in the retrieved SST significantly. The robust standard deviation of the new OE SST compared to matched drifting buoys becomes 0.39 K for all data. The smoothed OE gives SST sensitivity of 98% on average. This means that diurnal temperature variability and ocean frontal gradients are more faithfully estimated, and that the influence of the prior SST used is minimal (2%). This benefit is not available using traditional atmospheric correction smoothing.
Resumo:
An initial validation of the Along Track Scanning Radiometer (ATSR) Reprocessing for Climate (ARC) retrievals of sea surface temperature (SST) is presented. ATSR-2 and Advanced ATSR (AATSR) SST estimates are compared to drifting buoy and moored buoy observations over the period 1995 to 2008. The primary ATSR estimates are of skin SST, whereas buoys measure SST below the surface. Adjustment is therefore made for the skin effect, for diurnal stratification and for differences in buoy–satellite observation time. With such adjustments, satellite-in situ differences are consistent between day and night within ~ 0.01 K. Satellite-in situ differences are correlated with differences in observation time, because of the diurnal warming and cooling of the ocean. The data are used to verify the average behaviour of physical and empirical models of the warming/cooling rates. Systematic differences between adjusted AATSR and in-situ SSTs against latitude, total column water vapour (TCWV), and wind speed are less than 0.1 K, for all except the most extreme cases (TCWV < 5 kg m–2, TCWV > 60 kg m–2). For all types of retrieval except the nadir-only two-channel (N2), regional biases are less than 0.1 K for 80% of the ocean. Global comparison against drifting buoys shows night time dual-view two-channel (D2) SSTs are warm by 0.06 ± 0.23 K and dual-view three-channel (D3) SSTs are warm by 0.06 ± 0.21 K (day-time D2: 0.07 ± 0.23 K). Nadir-only results are N2: 0.03 ± 0.33 K and N3: 0.03 ± 0.19 K showing the improved inter-algorithm consistency to ~ 0.02 K. This represents a marked improvement from the existing operational retrieval algorithms for which inter-algorithm inconsistency is > 0.5 K. Comparison against tropical moored buoys, which are more accurate than drifting buoys, gives lower error estimates (N3: 0.02 ± 0.13 K, D2: 0.03 ± 0.18 K). Comparable results are obtained for ATSR-2, except that the ATSR-2 SSTs are around 0.1 K warm compared to AATSR
Resumo:
Numerical Weather Prediction (NWP) fields are used to assist the detection of cloud in satellite imagery. Simulated observations based on NWP are used within a framework based on Bayes' theorem to calculate a physically-based probability of each pixel with an imaged scene being clear or cloudy. Different thresholds can be set on the probabilities to create application-specific cloud-masks. Here, this is done over both land and ocean using night-time (infrared) imagery. We use a validation dataset of difficult cloud detection targets for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) achieving true skill scores of 87% and 48% for ocean and land, respectively using the Bayesian technique, compared to 74% and 39%, respectively for the threshold-based techniques associated with the validation dataset.
Resumo:
Numerical Weather Prediction (NWP) fields are used to assist the detection of cloud in satellite imagery. Simulated observations based on NWP are used within a framework based on Bayes' theorem to calculate a physically-based probability of each pixel with an imaged scene being clear or cloudy. Different thresholds can be set on the probabilities to create application-specific cloud masks. Here, the technique is shown to be suitable for daytime applications over land and sea, using visible and near-infrared imagery, in addition to thermal infrared. We use a validation dataset of difficult cloud detection targets for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) achieving true skill scores of 89% and 73% for ocean and land, respectively using the Bayesian technique, compared to 90% and 70%, respectively for the threshold-based techniques associated with the validation dataset.
Resumo:
The Advanced Along-Track Scanning Radiometer (AATSR) was launched on Envisat in March 2002. The AATSR instrument is designed to retrieve precise and accurate global sea surface temperature (SST) that, combined with the large data set collected from its predecessors, ATSR and ATSR-2, will provide a long term record of SST data that is greater than 15 years. This record can be used for independent monitoring and detection of climate change. The AATSR validation programme has successfully completed its initial phase. The programme involves validation of the AATSR derived SST values using in situ radiometers, in situ buoys and global SST fields from other data sets. The results of the initial programme presented here will demonstrate that the AATSR instrument is currently close to meeting its scientific objectives of determining global SST to an accuracy of 0.3 K (one sigma). For night time data, the analysis gives a warm bias of between +0.04 K (0.28 K) for buoys to +0.06 K (0.20 K) for radiometers, with slightly higher errors observed for day time data, showing warm biases of between +0.02 (0.39 K) for buoys to +0.11 K (0.33 K) for radiometers. They show that the ATSR series of instruments continues to be the world leader in delivering accurate space-based observations of SST, which is a key climate parameter.
Resumo:
Geomagnetic activity has long been known to exhibit approximately 27 day periodicity, resulting from solar wind structures repeating each solar rotation. Thus a very simple near-Earth solar wind forecast is 27 day persistence, wherein the near-Earth solar wind conditions today are assumed to be identical to those 27 days previously. Effective use of such a persistence model as a forecast tool, however, requires the performance and uncertainty to be fully characterized. The first half of this study determines which solar wind parameters can be reliably forecast by persistence and how the forecast skill varies with the solar cycle. The second half of the study shows how persistence can provide a useful benchmark for more sophisticated forecast schemes, namely physics-based numerical models. Point-by-point assessment methods, such as correlation and mean-square error, find persistence skill comparable to numerical models during solar minimum, despite the 27 day lead time of persistence forecasts, versus 2–5 days for numerical schemes. At solar maximum, however, the dynamic nature of the corona means 27 day persistence is no longer a good approximation and skill scores suggest persistence is out-performed by numerical models for almost all solar wind parameters. But point-by-point assessment techniques are not always a reliable indicator of usefulness as a forecast tool. An event-based assessment method, which focusses key solar wind structures, finds persistence to be the most valuable forecast throughout the solar cycle. This reiterates the fact that the means of assessing the “best” forecast model must be specifically tailored to its intended use.
Resumo:
Nocturnal cooling of air within a forest canopy and the resulting temperature profile may drive local thermally driven motions, such as drainage flows, which are believed to impact measurements of ecosystem–atmosphere exchange. To model such flows, it is necessary to accurately predict the rate of cooling. Cooling occurs primarily due to radiative heat loss. However, much of the radiative loss occurs at the surface of canopy elements (leaves, branches, and boles of trees), while radiative divergence in the canopy air space is small due to high transmissivity of air. Furthermore, sensible heat exchange between the canopy elements and the air space is slow relative to radiative fluxes. Therefore, canopy elements initially cool much more quickly than the canopy air space after the switch from radiative gain during the day to radiative loss during the night. Thus in modeling air cooling within a canopy, it is not appropriate to neglect the storage change of heat in the canopy elements or even to assume equal rates of cooling of the canopy air and canopy elements. Here a simple parameterization of radiatively driven cooling of air within the canopy is presented, which accounts implicitly for radiative cooling of the canopy volume, heat storage in the canopy elements, and heat transfer between the canopy elements and the air. Simulations using this parameterization are compared to temperature data from the Morgan–Monroe State Forest (IN, USA) FLUXNET site. While the model does not perfectly reproduce the measured rates of cooling, particularly near the top of the canopy, the simulated cooling rates are of the correct order of magnitude.
Resumo:
Fossil pollen data supplemented by tree macrofossil records were used to reconstruct the vegetation of the Former Soviet Union and Mongolia at 6000 years. Pollen spectra were assigned to biomes using the plant-functional-type method developed by Prentice et al. (1996). Surface pollen data and a modern vegetation map provided a test of the method. This is the first time such a broad-scale vegetation reconstruction for the greater part of northern Eurasia has been attempted with objective techniques. The new results confirm previous regional palaeoenvironmental studies of the mid-Holocene while providing a comprehensive synopsis and firmer conclusions. West of the Ural Mountains temperate deciduous forest extended both northward and southward from its modern range. The northern limits of cool mixed and cool conifer forests were also further north than present. Taiga was reduced in European Russia, but was extended into Yakutia where now there is cold deciduous forest. The northern limit of taiga was extended (as shown by increased Picea pollen percentages, and by tree macrofossil records north of the present-day forest limit) but tundra was still present in north-eastern Siberia. The boundary between forest and steppe in the continental interior did not shift substantially, and dry conditions similar to present existed in western Mongolia and north of the Aral Sea.
Resumo:
A journal article published in the Blue Notebook: Journal for artists' books. Vol 8 No 2, April 2014 exploring the work of video and book artist John Woodman and his relationship with John Ruskin's life and landscapes.
Resumo:
Background: Advances in nutritional assessment are continuing to embrace developments in computer technology. The online Food4Me food frequency questionnaire (FFQ) was created as an electronic system for the collection of nutrient intake data. To ensure its accuracy in assessing both nutrient and food group intake, further validation against data obtained using a reliable, but independent, instrument and assessment of its reproducibility are required. Objective: The aim was to assess the reproducibility and validity of the Food4Me FFQ against a 4-day weighed food record (WFR). Methods: Reproducibility of the Food4Me FFQ was assessed using test-retest methodology by asking participants to complete the FFQ on 2 occasions 4 weeks apart. To assess the validity of the Food4Me FFQ against the 4-day WFR, half the participants were also asked to complete a 4-day WFR 1 week after the first administration of the Food4Me FFQ. Level of agreement between nutrient and food group intakes estimated by the repeated Food4Me FFQ and the Food4Me FFQ and 4-day WFR were evaluated using Bland-Altman methodology and classification into quartiles of daily intake. Crude unadjusted correlation coefficients were also calculated for nutrient and food group intakes. Results: In total, 100 people participated in the assessment of reproducibility (mean age 32, SD 12 years), and 49 of these (mean age 27, SD 8 years) also took part in the assessment of validity. Crude unadjusted correlations for repeated Food4Me FFQ ranged from .65 (vitamin D) to .90 (alcohol). The mean cross-classification into “exact agreement plus adjacent” was 92% for both nutrient and food group intakes, and Bland-Altman plots showed good agreement for energy-adjusted macronutrient intakes. Agreement between the Food4Me FFQ and 4-day WFR varied, with crude unadjusted correlations ranging from .23 (vitamin D) to .65 (protein, % total energy) for nutrient intakes and .11 (soups, sauces and miscellaneous foods) to .73 (yogurts) for food group intake. The mean cross-classification into “exact agreement plus adjacent” was 80% and 78% for nutrient and food group intake, respectively. There were no significant differences between energy intakes estimated using the Food4Me FFQ and 4-day WFR, and Bland-Altman plots showed good agreement for both energy and energy-controlled nutrient intakes. Conclusions: The results demonstrate that the online Food4Me FFQ is reproducible for assessing nutrient and food group intake and has moderate agreement with the 4-day WFR for assessing energy and energy-adjusted nutrient intakes. The Food4Me FFQ is a suitable online tool for assessing dietary intake in healthy adults.
Resumo:
BACKGROUND The aim of this study was to investigate the effects of low to moderate temperatures on gluten functionality and gluten protein composition. Four spring wheat cultivars were grown in climate chambers with three temperature regimes (day/night temperatures of 13/10, 18/15 and 23/20 °C) during grain filling. RESULTS The temperature strongly influenced grain weight and protein content. Gluten quality measured by maximum resistance to extension (Rmax) was highest in three cultivars grown at 13 °C. Rmax was positively correlated with the proportion of sodium dodecyl sulfate-unextractable polymeric proteins (%UPP). The proportions of ω-gliadins and D-type low-molecular-weight glutenin subunits (LMW-GS) increased and the proportions of α- and γ-gliadins and B-type LMW-GS decreased with higher temperature, while the proportion of high-molecular-weight glutenin subunits (HMW-GS) was constant between temperatures. The cultivar Berserk had strong and constant Rmax between the different temperatures. CONCLUSION Constant low temperature, even as low as 13 °C, had no negative effects on gluten quality. The observed variation in Rmax related to temperature could be explained more by %UPP than by changes in the proportions of HMW-GS or other gluten proteins. The four cultivars responded differently to temperature, as gluten from Berserk was stronger and more stable over a wide range of temperature