85 resultados para Multi-sector models
Resumo:
Diurnal warming events between 5 and 7 K, spatially coherent over large areas (∼1000 km), are observed in independent satellite measurements of ocean surface temperature. The majority of the large events occurred in the extra-tropics. Given sufficient heating (from solar radiation), the location and magnitude of these events appears to be primarily determined by large-scale wind patterns. The amplitude of the measured diurnal heating scales inversely with the spatial resolution of the different sensors used in this study. These results indicate that predictions of peak diurnal warming using wind speeds with a 25 km spatial resolution available from satellite sensors and those with 50–100 km resolution from Numerical Weather Prediction models may have underestimated warming. Thus, the use of these winds in modeling diurnal effects will be limited in accuracy by both the temporal and spatial resolution of the wind fields.
Resumo:
Activities like the Coupled Model Intercomparison Project (CMIP) have revolutionized climate modelling in terms of our ability to compare models and to process information about climate projections and their uncertainties. The evaluation of models against observations is now considered a key component of multi-model studies. While there are a number of outstanding scientific issues surrounding model evaluation, notably the open question of how to link model performance to future projections, here we highlight a specific but growing problem in model evaluation - that of uncertainties in the observational data that are used to evaluate the models. We highlight the problem using an example obtained from studies of the South Asian Monsoon but we believe the problem is a generic one which arises in many different areas of climate model evaluation and which requires some attention by the community.
Resumo:
It is often assumed that humans generate a 3D reconstruction of the environment, either in egocentric or world-based coordinates, but the steps involved are unknown. Here, we propose two reconstruction-based models, evaluated using data from two tasks in immersive virtual reality. We model the observer’s prediction of landmark location based on standard photogrammetric methods and then combine location predictions to compute likelihood maps of navigation behaviour. In one model, each scene point is treated independently in the reconstruction; in the other, the pertinent variable is the spatial relationship between pairs of points. Participants viewed a simple environment from one location, were transported (virtually) to another part of the scene and were asked to navigate back. Error distributions varied substantially with changes in scene layout; we compared these directly with the likelihood maps to quantify the success of the models. We also measured error distributions when participants manipulated the location of a landmark to match the preceding interval, providing a direct test of the landmark-location stage of the navigation models. Models such as this, which start with scenes and end with a probabilistic prediction of behaviour, are likely to be increasingly useful for understanding 3D vision.
Resumo:
Fresh water hosing simulations, in which a fresh water flux is imposed in the North Atlantic to force fluctuations of the Atlantic Meridional Overturning Circulation, have been routinely performed, first to study the climatic signature of different states of this circulation, then, under present or future conditions, to investigate the potential impact of a partial melting of the Greenland ice sheet. The most compelling examples of climatic changes potentially related to AMOC abrupt variations, however, are found in high resolution palaeo-records from around the globe for the last glacial period. To study those more specifically, more and more fresh water hosing experiments have been performed under glacial conditions in the recent years. Here we compare an ensemble constituted by 11 such simulations run with 6 different climate models. All simulations follow a slightly different design, but are sufficiently close in their design to be compared. They all study the impact of a fresh water hosing imposed in the extra-tropical North Atlantic. Common features in the model responses to hosing are the cooling over the North Atlantic, extending along the sub-tropical gyre in the tropical North Atlantic, the southward shift of the Atlantic ITCZ and the weakening of the African and Indian monsoons. On the other hand, the expression of the bipolar see-saw, i.e., warming in the Southern Hemisphere, differs from model to model, with some restricting it to the South Atlantic and specific regions of the southern ocean while others simulate a widespread southern ocean warming. The relationships between the features common to most models, i.e., climate changes over the north and tropical Atlantic, African and Asian monsoon regions, are further quantified. These suggest a tight correlation between the temperature and precipitation changes over the extra-tropical North Atlantic, but different pathways for the teleconnections between the AMOC/North Atlantic region and the African and Indian monsoon regions.
Resumo:
An extensive off-line evaluation of the Noah/Single Layer Urban Canopy Model (Noah/SLUCM) urban land-surface model is presented using data from 15 sites to assess (1) the ability of the scheme to reproduce the surface energy balance observed in a range of urban environments, including seasonal changes, and (2) the impact of increasing complexity of input parameter information. Model performance is found to be most dependent on representation of vegetated surface area cover; refinement of other parameter values leads to smaller improvements. Model biases in net all-wave radiation and trade-offs between turbulent heat fluxes are highlighted using an optimization algorithm. Here we use the Urban Zones to characterize Energy partitioning (UZE) as the basis to assign default SLUCM parameter values. A methodology (FRAISE) to assign sites (or areas) to one of these categories based on surface characteristics is evaluated. Using three urban sites from the Basel Urban Boundary Layer Experiment (BUBBLE) dataset, an independent evaluation of the model performance with the parameter values representative of each class is performed. The scheme copes well with both seasonal changes in the surface characteristics and intra-urban heterogeneities in energy flux partitioning, with RMSE performance comparable to similar state-of-the-art models for all fluxes, sites and seasons. The potential of the methodology for high-resolution atmospheric modelling application using the Weather Research and Forecasting (WRF) model is highlighted. This analysis supports the recommendations that (1) three classes are appropriate to characterize the urban environment, and (2) that the parameter values identified should be adopted as default values in WRF.
Resumo:
The domestic (residential) sector accounts for 30% of the world’s energy consumption hence plays a substantial role in energy management and CO2 emissions reduction efforts. Energy models have been generally developed to mitigate the impact of climate change and for the sustainable management and planning of energy resources. Although there are different models and model categories, they are generally categorised into top down and bottom up. Significantly, top down models are based on aggregated data while bottom up models are based on disaggregated data. These approaches create fundamental differences which have been the centre of debate since the 1970’s. These differences have led to noticeable discrepancies in results which have led to authors arguing that the models are of a more complementary than a substituting nature. As a result developing methods suggest that there is the need to integrate either the two models (bottom up − top down) or aspects that combine two bottom up models or an upgrade of top down models to compensate for the documented limitations. Diverse schools of thought argue in favour of these integrations – currently known as hybrid models. In this paper complexities of identifying country specific and/or generic domestic energy models and their applications in different countries have been critically reviewed. Predominantly from the review it is evident that most of these methods have been adapted and used in the ‘western world’ with practically no such applications in Africa.
Resumo:
Methods of improving the coverage of Box–Jenkins prediction intervals for linear autoregressive models are explored. These methods use bootstrap techniques to allow for parameter estimation uncertainty and to reduce the small-sample bias in the estimator of the models’ parameters. In addition, we also consider a method of bias-correcting the non-linear functions of the parameter estimates that are used to generate conditional multi-step predictions.
Resumo:
With particular reference to its role in the corporate real estate supply chain, this paper focuses on how the serviced office sector in the UK has evolved and changed over the last decade. A qualitative research approach involving 21 semi-structured interviews with corporate clients of serviced office operators was used to address a number of issues regarding the perceptions of users of serviced offices. It is concluded that the serviced office sector has become an established sector of the UK’s commercial real estate market providing an essential product for many corporate organisations. The serviced office sector has been relatively nimble and a range of operational models have emerged. It was found that corporate organisations use serviced office space and services in order to align workforce change with portfolio change, to transfer risk, for short-term project space, as temporary overflow space, to pilot a new location, to become familiar with a specific geographical marketplace or simply to gain an initial presence in an area.
Resumo:
The central sector of the last British–Irish Ice Sheet (BIIS) was characterised by considerable complexity, both in terms of its glacial stratigraphy and geomorphological signature. This complexity is reflected by the large number and long history of papers that have attempted to decipher the glaciodynamic history of the region. Despite significant advances in our understanding, reconstructions remain hotly debated and relatively local, thereby hindering attempts to piece together BIIS dynamics. This paper seeks to address these issues by reviewing geomorphological mapping evidence of palimpsest flow signatures and providing an up-to-date stratigraphy of the region. Reconciling geomorphological and sedimentological evidence with relative and absolute dating constraints has allowed us to develop a new six-stage glacial model of ice-flow history and behaviour in the central sector of the last BIIS, with three major phases of glacial advance. This includes: I. Eastwards ice flow through prominent topographic corridors of the north Pennines; II. Cessation of the Stainmore ice flow pathway and northwards migration of the North Irish Sea Basin ice divide; III. Stagnation and retreat of the Tyne Gap Ice Stream; IV. Blackhall Wood–Gosforth Oscillation; V. Deglaciation of the Solway Lowlands; and VI. Scottish Re-advance and subsequent final retreat of ice out of the central sector of the last BIIS. The ice sheet was characterised by considerable dynamism, with flow switches, initiation (and termination) of ice streams, draw-down of ice into marine ice streams, repeated ice-marginal fluctuations and the production of large volumes of meltwater, locally impounded to form ice-dammed glacial lakes. Significantly, we tie this reconstruction to work carried out and models developed for the entire ice sheet. This therefore situates research in the central sector within contemporary understanding of how the last BIIS evolved over time.
Resumo:
Predictability of the western North Pacific (WNP) summer climate associated with different El Niño–Southern Oscillation (ENSO) phases is investigated in this study based on the 1-month lead retrospective forecasts of five state-of-the-art coupled models from ENSEMBLES. During the period from 1960 to 2005, the models well capture the WNP summer climate anomalies during most of years in different ENSO phases except the La Niña decaying summers. In the El Niño developing, El Niño decaying and La Niña developing summers, the prediction skills are high for the WNP summer monsoon index (WNPMI), with the prediction correlation larger than 0.7. The high prediction skills of the lower-tropospheric circulation during these phases are found mainly over the tropical western Pacific Ocean, South China Sea and subtropical WNP. These good predictions correspond well to their close teleconnection with ENSO and the high prediction skills of tropical SSTs. By contrast, for the La Niña decaying summers, the prediction skills are considerably low with the prediction correlation for the WNPMI near to zero and low prediction skills around the Philippines and subtropical WNP. These poor predictions relate to the weak summer anomalies of the WNPMI during the La Niña decaying years and no significant connections between the WNP lower-tropospheric circulation anomalies and the SSTs over the tropical central and eastern Pacific Ocean in observations. However, the models tend to predict an apparent anomalous cyclone over the WNP during the La Niña decaying years, indicating a linearity of the circulation response over WNP in the models prediction in comparison with that during the El Niño decaying years which differs from observations. In addition, the models show considerable capability in describing the WNP summer anomalies during the ENSO neutral summers. These anomalies are related to the positive feedback between the WNP lower-tropospheric circulation and the local SSTs. The models can capture this positive feedback but with some uncertainties from different ensemble members during the ENSO neutral summers.
Resumo:
Purpose – Progress in retrofitting the UK's commercial properties continues to be slow and fragmented. New research from the UK and USA suggests that radical changes are needed to drive large-scale retrofitting, and that new and innovative models of financing can create new opportunities. The purpose of this paper is to offer insights into the terminology of retrofit and the changes in UK policy and practice that are needed to scale up activity in the sector. Design/methodology/approach – The paper reviews and synthesises key published research into commercial property retrofitting in the UK and USA and also draws on policy and practice from the EU and Australia. Findings – The paper provides a definition of “retrofit”, and compares and contrasts this with “refurbishment” and “renovation” in an international context. The paper summarises key findings from recent research and suggests that there are a number of policy and practice measures which need to be implemented in the UK for commercial retrofitting to succeed at scale. These include improved funding vehicles for retrofit; better transparency in actual energy performance; and consistency in measurement, verification and assessment standards. Practical implications – Policy and practice in the UK needs to change if large-scale commercial property retrofit is to be rolled out successfully. This requires mandatory legislation underpinned by incentives and penalties for non-compliance. Originality/value – This paper synthesises recent research to provide a set of policy and practice recommendations which draw on international experience, and can assist on implementation in the UK.
Resumo:
The overall global-scale consequences of climate change are dependent on the distribution of impacts across regions, and there are multiple dimensions to these impacts.This paper presents a global assessment of the potential impacts of climate change across several sectors, using a harmonised set of impacts models forced by the same climate and socio-economic scenarios. Indicators of impact cover the water resources, river and coastal flooding, agriculture, natural environment and built environment sectors. Impacts are assessed under four SRES socio-economic and emissions scenarios, and the effects of uncertainty in the projected pattern of climate change are incorporated by constructing climate scenarios from 21 global climate models. There is considerable uncertainty in projected regional impacts across the climate model scenarios, and coherent assessments of impacts across sectors and regions therefore must be based on each model pattern separately; using ensemble means, for example, reduces variability between sectors and indicators. An example narrative assessment is presented in the paper. Under this narrative approximately 1 billion people would be exposed to increased water resources stress, around 450 million people exposed to increased river flooding, and 1.3 million extra people would be flooded in coastal floods each year. Crop productivity would fall in most regions, and residential energy demands would be reduced in most regions because reduced heating demands would offset higher cooling demands. Most of the global impacts on water stress and flooding would be in Asia, but the proportional impacts in the Middle East North Africa region would be larger. By 2050 there are emerging differences in impact between different emissions and socio-economic scenarios even though the changes in temperature and sea level are similar, and these differences are greater in 2080. However, for all the indicators, the range in projected impacts between different climate models is considerably greater than the range between emissions and socio-economic scenarios.
Resumo:
Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e.g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.
Resumo:
Data collected by ground magnetometers and high latitude radars during a small isolated substorm are discussed in terms of the global changes in convection during the substorm. This substorm was observed during the international GISMOS (Global Ionospheric Simultaneous Measurements of Substorms) Experiment of 1 – 5 June 1987 and the array of observations discussed here span the night sector from approximately dusk to dawn. The substorm, observed by the Sondrestrom radar and auroral and midlatitude magnetometers is associated with a polar cap contraction observed near dusk by the EISCAT radar.
A benchmark-driven modelling approach for evaluating deployment choices on a multi-core architecture
Resumo:
The complexity of current and emerging architectures provides users with options about how best to use the available resources, but makes predicting performance challenging. In this work a benchmark-driven model is developed for a simple shallow water code on a Cray XE6 system, to explore how deployment choices such as domain decomposition and core affinity affect performance. The resource sharing present in modern multi-core architectures adds various levels of heterogeneity to the system. Shared resources often includes cache, memory, network controllers and in some cases floating point units (as in the AMD Bulldozer), which mean that the access time depends on the mapping of application tasks, and the core's location within the system. Heterogeneity further increases with the use of hardware-accelerators such as GPUs and the Intel Xeon Phi, where many specialist cores are attached to general-purpose cores. This trend for shared resources and non-uniform cores is expected to continue into the exascale era. The complexity of these systems means that various runtime scenarios are possible, and it has been found that under-populating nodes, altering the domain decomposition and non-standard task to core mappings can dramatically alter performance. To find this out, however, is often a process of trial and error. To better inform this process, a performance model was developed for a simple regular grid-based kernel code, shallow. The code comprises two distinct types of work, loop-based array updates and nearest-neighbour halo-exchanges. Separate performance models were developed for each part, both based on a similar methodology. Application specific benchmarks were run to measure performance for different problem sizes under different execution scenarios. These results were then fed into a performance model that derives resource usage for a given deployment scenario, with interpolation between results as necessary.