73 resultados para Mood stabiliser


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The cannabinoid cannabinoid type 1 (CB1) neutral antagonist tetrahydrocannabivarin (THCv) has been suggested as a possible treatment for obesity, but without the depressogenic side-effects of inverse antagonists such as Rimonabant. However, how THCv might affect the resting state functional connectivity of the human brain is as yet unknown. METHOD: We examined the effects of a single 10mg oral dose of THCv and placebo in 20 healthy volunteers in a randomized, within-subject, double-blind design. Using resting state functional magnetic resonance imaging and seed-based connectivity analyses, we selected the amygdala, insula, orbitofrontal cortex, and dorsal medial prefrontal cortex (dmPFC) as regions of interest. Mood and subjective experience were also measured before and after drug administration using self-report scales. RESULTS: Our results revealed, as expected, no significant differences in the subjective experience with a single dose of THCv. However, we found reduced resting state functional connectivity between the amygdala seed region and the default mode network and increased resting state functional connectivity between the amygdala seed region and the dorsal anterior cingulate cortex and between the dmPFC seed region and the inferior frontal gyrus/medial frontal gyrus. We also found a positive correlation under placebo for the amygdala-precuneus connectivity with the body mass index, although this correlation was not apparent under THCv. CONCLUSION: Our findings are the first to show that treatment with the CB1 neutral antagonist THCv decreases resting state functional connectivity in the default mode network and increases connectivity in the cognitive control network and dorsal visual stream network. This effect profile suggests possible therapeutic activity of THCv for obesity, where functional connectivity has been found to be altered in these regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parents have large genetic and environmental influences on offspring’s cognition, behavior, and brain. These intergenerational effects are observed in mood disorders, with particularly robust association in depression between mothers and daughters. No studies have thus far examined the neural bases of these intergenerational effects in humans. Corticolimbic circuitry is known to be highly relevant in a wide range of processes including mood regulation and depression. These findings suggest that corticolimbic circuitry may also show matrilineal transmission patterns. We therefore examined human parent-offspring association in this neurocircuitry, and investigated the degree of association in gray matter volume between parent and offspring. We used voxel-wise correlation analysis in a total of 35 healthy families, consisting of parents and their biological offspring. We found positive associations of regional grey matter volume in the corticolimbic circuit including the amygdala, hippocampus, anterior cingulate cortex, and ventromedial prefrontal cortex between biological mothers and daughters. This association was significantly greater than mother-son, father-daughter, and father-son associations. The current study suggests that the corticolimbic circuitry, which has been implicated in mood regulation, shows a matrilineal specific transmission patterns. Our preliminary findings are consistent with what has been found behaviorally in depression, and may have clinical implications for disorders known to have dysfunction in mood regulation such as depression. Studies such as ours will likely bridge animal work examining gene expression in the brains and clinical symptom-based observations, and provide promising ways to investigate intergenerational transmission patterns in the human brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Daily consumption of Concord grape juice (CGJ) over three to four months has been shown to improve memory function in adults with mild cognitive impairment, and reduce blood pressure in hypertensive adults. These benefits are likely due to the high concentration of polyphenols in CGJ. Increased stress can impair cognitive function and elevate blood pressure. Thus we examined the potential beneficial effect of CGJ in individuals experiencing somewhat stressful demanding lifestyles. Objective: To examine the effects of twelve weeks’ daily consumption of CGJ on cognitive function, driving performance, and blood pressure in healthy, middle-aged working mothers. Design: Twenty five healthy mothers of pre-teen children, aged 40-50 years, who were employed for > 30 hours/week consumed 12oz (355ml) CGJ (containing 777mg total polyphenols) or an energy, taste and appearance matched placebo daily for twelve weeks according to a randomised, crossover design with a four week washout. Verbal and spatial memory, executive function, attention, blood pressure and mood were assessed at baseline, six weeks and twelve weeks. Immediately following the cognitive battery, a subsample of seventeen females completed a driving performance assessment in the University of Leeds Driving Simulator. The twenty five minute driving task required participants to match the speed and direction of a lead vehicle. Results: Significant improvements in immediate spatial memory and driving performance were observed following CGJ relative to placebo. There was evidence of an enduring effect of CGJ such that participants who received CGJ in arm 1 maintained better performance in the placebo arm. Conclusions: Cognitive benefits associated with chronic consumption of flavonoid-rich grape juice are not exclusive to adults with mild cognitive impairment. Moreover, these cognitive benefits are apparent in complex everyday tasks such as driving. Effects may persist beyond cessation of flavonoid consumption and future studies should carefully consider the length of washout within crossover designs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence shows that nutritional and environmental stress stimuli during postnatal period influence brain development and interactions between gut and brain. In this study we show that in rats, prevention of weaning from maternal milk results in depressive-like behavior, which is accompanied by changes in the gut bacteria and host metabolism. Depressive-like behavior was studied using the forced-swim test on postnatal day (PND) 25 in rats either weaned on PND 21, or left with their mother until PND 25 (non-weaned). Non-weaned rats showed an increased immobility time consistent with a depressive phenotype. Fluorescence in situ hybridization showed non-weaned rats to harbor significantly lowered Clostridium histolyticum bacterial groups but exhibit marked stress-induced increases. Metabonomic analysis of urine from these animals revealed significant differences in the metabolic profiles, with biochemical phenotypes indicative of depression in the non-weaned animals. In addition, non-weaned rats showed resistance to stress-induced modulation of oxytocin receptors in amygdala nuclei, which is indicative of passive stress-coping mechanism. We conclude that delaying weaning results in alterations to the gut microbiota and global metabolic profiles which may contribute to a depressive phenotype and raise the issue that mood disorders at early developmental ages may reflect interplay between mammalian host and resident bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interpretation biases have been shown to play a role in adult depression and are a target in cognitive behavioural therapy. Adolescence is a key risk period for the development of depression and a period of rapid cognitive and emotional development but little research has investigated the relationship between interpretation biases and depression in adolescents. This study adapted a measure of interpretation bias, the Ambiguous Scenarios Test for Depression, for adolescents and evaluated its reliability and validity. A community sample of 206 young people aged 12 to 18 years completed a validated measure of depression symptoms (Mood and Feelings Questionnaires) and the adapted Ambiguous Scenarios Test. The Ambiguous Scenarios Test for Depression in Adolescents had good internal consistency and split half reliability. Depression symptoms were associated with participants’ ratings of the valence of ambiguous situations and with interpretation biases. Importantly, symptoms of depression and anxiety were independently associated with interpretation bias. This research suggests that interpretation biases can be measured in this age group, that negative interpretation biases exist in adolescents and that these are associated with depression symptoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanisms and consequences of the effects of estrogen on the brain have been studied both at the fundamental level and with therapeutic applications in mind. Estrogenic hormones binding in particular neurons in a limbic-hypothalamic system and their effects on the electrophysiology and molecular biology of medial hypothalamic neurons were central in establishing the first circuit for a mammalian behavior, the female-typical mating behavior, lordosis. Notably, the ability of estradiol to facilitate transcription from six genes whose products are important for lordosis behavior proved that hormones can turn on genes in specific neurons at specific times, with sensible behavioral consequences. The use of a gene knockout for estrogen receptor alpha (ERalpha) revealed that homozygous mutant females simply would not do lordosis behavior and instead were extremely aggressive, thus identifying a specific gene as essential for a mammalian social behavior. In dramatic contrast, ERbeta knockout females can exhibit normal lordosis behavior. With the understanding, in considerable mechanistic detail, of how the behavior is produced, now we are also studying brain mechanisms for the biologically adaptive influences which constrain reproductive behavior. With respect to cold temperatures and other environmental or metabolic circumstances which are not consistent with successful reproduction, we are interested in thyroid hormone effects in the brain. Competitive relations between two types of transcription factors - thyroid hormone receptors and estrogen receptors have the potential of subserving the blocking effects of inappropriate environmental circumstances on female reproductive behaviors. TRs can compete with ERalpha both for DNA binding to consensus and physiological EREs and for nuclear coactivators. In the presence of both TRs and ERs, in transfection studies, thyroid hormone coadministration can reduce estrogen-stimulated transcription. These competitive relations apparently have behavioral consequences, as thyroid hormones will reduce lordosis, and a TRbeta gene knockout will increase it. In sum, we not only know several genes that participate in the selective control of this sex behavior, but also, for two genes, we know the causal routes. Estrogenic hormones are also the foci of widespread attention for their potential therapeutic effects improving, for example, certain aspects of mood and cognition. The former has an efficient animal analog, demonstrated by the positive effects of estrogen in the Porsolt forced swim test. The latter almost certainly depends upon trophic actions of estrogen on several fundamental features of nerve cell survival and growth. The hypothesis is raised that the synaptic effects of estrogens are secondary to the trophic actions of this type of hormone in the nucleus and nerve cell body.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose of review Novel analyses of the relations between thyroid hormone receptor signaling and estrogen receptor—dependent mechanisms are timely for two sets of reasons. Clinically, both affect mood and foster neuronal growth and regeneration. Mechanistically, they overlap at the levels of DNA recognition elements, coactivators, and signal transduction systems. Crosstalk between thyroid hormone receptors and estrogen receptors is possibly important to integrate external signals to transcription within neurons. Recent findings It has been shown that reproductive functions, including behaviors, driven by estrogens can be antagonized by thyroid hormones, and it has been argued that such crosstalk is biologically adaptive to ensure optimal reproduction. Transcriptional facilitation during transient transfunction studies show that the interactions between thyroid receptor isoforms and estrogen receptor isoforms depend on cell type and promoter context. Overall, this pattern of interactions assures multiple and flexible means of transcriptional regulation. Surprisingly, in some brain areas, thyroid hormone actions can synergize with estrogenic effects, particularly when nongenomic modes of action are considered, such as kinase activation, which, as has been reported, affect later estrogen receptor—induced genomic events. Summary In summary, recent work with nerve cells has contributed to a paradigm shift in how the molecular and behavioral effects of hormones which act through nuclear receptors are viewed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thyroid hormones (T) and estrogens (E) are nuclear receptor ligands with at least two molecular mechanisms of action: (i) relatively slow genomic effects, such as the regulation of transcription by cognate T receptors (TR) and E receptors (ER); and (ii) relatively rapid nongenomic effects, such as kinase activation and calcium release initiated at the membrane by putative membrane receptors. Genomic and nongenomic effects were thought to be disparate and independent. However, in a previous study using a two-pulse paradigm in neuroblastoma cells, we showed that E acting at the membrane could potentiate transcription from an E-driven reporter gene in the nucleus. Because both T and E can have important effects on mood and cognition, it is possible that the two hormones can act synergistically. In this study, we demonstrate that early actions of T via TRalpha1 and TRbeta1 can potentiate E-mediated transcription (genomic effects) from a consensus E response element (ERE)-driven reporter gene in transiently transfected neuroblastoma cells. Such potentiation was reduced by inhibition of mitogen-activated protein kinase. Using phosphomutants of ERalpha, we also show that probable mitogen-activated protein kinase phosphorylation sites on the ERalpha, the serines at position 167 and 118, are important in TRbeta1-mediated potentiation of ERalpha-induced transactivation. We suggest that crosstalk between T and E includes potential interactions through both nuclear and membrane-initiated molecular mechanisms of hormone signaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estrogens and thyroid hormones are regulators of important diverse physiological processes such as reproduction, thermogenesis, neural development, neural differentiation and cardiovascular functions. Both are ligands for receptors in the nuclear receptor superfamily, which act as ligand-dependent transcription factors, regulating transcription. However, estrogens and thyroid hormones also rapidly (within minutes or seconds) activate kinase cascades and calcium increases, presumably initiated at the cell membrane. We discuss the relevance of both modes of hormone action, including the membrane estrogen receptor, to physiology, with particular reference to lordosis behavior. We first showed that estrogen restricted to the membrane can, in fact, lead to subsequent increases in transcription from a consensus estrogen response element-based reporter in the neuroblastoma cell line, SK-N-BE(2)C. Using a novel hormonal paradigm, we also showed that the activation of protein kinase A, protein kinase C, mitogen activated protein kinase and increases in calcium were important in the ability of the membrane-limited estrogen to potentiate transcription. We discuss the source of calcium important in transcriptional potentiation. Since estrogens and thyroid hormones have common effects on neuroprotection, cognition and mood, we also hypothesized that crosstalk could occur between the rapid actions of thyroid hormones and the genomic actions of estrogens. In neural cells, we showed that triiodothyronine acting rapidly via MAPK can increase transcription by the nuclear estrogen receptor ERa from a consensus estrogen response element, possibly by the phosphorylation of the ERa. Novel mechanisms that link signals initiated by hormones from the membrane to the nucleus are physiologically relevant and can achieve neuroendocrine integration

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thyroid hormone levels are implicated in mood disorders in the adult human but the mechanisms remain unclear partly because, in rodent models, more attention has been paid to the consequences of perinatal hypo and hyperthyroidism. Thyroid hormones act via the thyroid hormone receptor (TR) alpha and beta isoforms, both of which are expressed in the limbic system. TR's modulate gene expression via both unliganded and liganded actions. Though the thyroid hormone receptor (TR) knockouts and a transgenic TRalpha1 knock-in mouse have provided us valuable insight into behavioral phenotypes such as anxiety and depression, it is not clear if this is because of the loss of unliganded actions or liganded actions of the receptor or due to locomotor deficits. We used a hypothyroid mouse model and supplementation with tri-iodothyronine (T3) or thyroxine (T4) to investigate the consequences of dysthyroid hormone levels on behaviors that denote anxiety. Our data from the open field and the light-dark transition tests suggest that adult onset hypothyroidism in male mice produces a mild anxiogenic effect that is possibly due to unliganded receptor actions. T3 or T4 supplementation reverses this phenotype and euthyroid animals show anxiety that is intermediate between the hypothyroid and thyroid hormone supplemented groups. In addition, T3 but not T4 supplemented animals have lower spine density in the CA1 region of the hippocampus and in the central amygdala suggesting that T3-mediated rescue of the hypothyroid state might be due to lower neuronal excitability in the limbic circuit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compared with younger adults, older adults have a relative preference to attend to and remember positive over negative information. This is known as the “positivity effect,” and researchers have typically evoked socioemotional selectivity theory to explain it. According to socioemotional selectivity theory, as people get older they begin to perceive their time left in life as more limited. These reduced time horizons prompt older adults to prioritize achieving emotional gratification and thus exhibit increased positivity in attention and recall. Although this is the most commonly cited explanation of the positivity effect, there is currently a lack of clear experimental evidence demonstrating a link between time horizons and positivity. The goal of the current research was to address this issue. In two separate experiments, we asked participants to complete a writing activity, which directed them to think of time as being either limited or expansive (Experiments 1 and 2) or did not orient them to think about time in a particular manner (Experiment 2). Participants were then shown a series of emotional pictures, which they subsequently tried to recall. Results from both studies showed that regardless of chronological age, thinking about a limited future enhanced the relative positivity of participants’ recall. Furthermore, the results of Experiment 2 showed that this effect was not driven by changes in mood. Thus, the fact that older adults’ recall is typically more positive than younger adults’ recall may index naturally shifting time horizons and goals with age.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given the long-term negative outcomes associated with depression in adolescence, there is a pressing need to develop brief, evidence based treatments that are accessible to more young people experiencing low mood. Behavioural Activation (BA) is an effective treatment for adult depression, however little research has focused on the use of BA with depressed adolescents, particularly with briefer forms of BA. In this article we outline an adaptation of brief Behavioral Activation Treatment of Depression (BATD) designed for adolescents and delivered in eight sessions (Brief BA). This case example illustrates how a structured, brief intervention was useful for a depressed young person with a number of complicating and risk factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maternal depression is associated with increased risk for offspring mood and anxiety disorders. One possible impact of maternal depression during offspring development is on the emotional autobiographical memory system. We investigated the neural mechanisms of emotional autobiographical memory in adult offspring of mothers with postnatal depression (N = 16) compared to controls (N = 21). During fMRI, recordings of participants describing one pleasant and one unpleasant situation with their mother and with a companion, were used as prompts to re-live the situations. Compared to controls we predicted the PND offspring would show: greater activation in medial and posterior brain regions implicated in autobiographical memory and rumination; and decreased activation in lateral prefrontal cortex and decreased connectivity between lateral prefrontal and posterior regions, reflecting reduced control of autobiographical recall. For negative situations, we found no group differences. For positive situations with their mothers, PND offspring showed higher activation than controls in left lateral prefrontal cortex, right frontal pole, cingulate cortex and precuneus, and lower connectivity of right middle frontal gyrus, left middle temporal gyrus, thalamus and lingual gyrus with the posterior cingulate. Our results are consistent with adult offspring of PND mothers having less efficient prefrontal regulation of personally relevant pleasant autobiographical memories.