88 resultados para Modelling and rendering programs
Resumo:
Models developed to identify the rates and origins of nutrient export from land to stream require an accurate assessment of the nutrient load present in the water body in order to calibrate model parameters and structure. These data are rarely available at a representative scale and in an appropriate chemical form except in research catchments. Observational errors associated with nutrient load estimates based on these data lead to a high degree of uncertainty in modelling and nutrient budgeting studies. Here, daily paired instantaneous P and flow data for 17 UK research catchments covering a total of 39 water years (WY) have been used to explore the nature and extent of the observational error associated with nutrient flux estimates based on partial fractions and infrequent sampling. The daily records were artificially decimated to create 7 stratified sampling records, 7 weekly records, and 30 monthly records from each WY and catchment. These were used to evaluate the impact of sampling frequency on load estimate uncertainty. The analysis underlines the high uncertainty of load estimates based on monthly data and individual P fractions rather than total P. Catchments with a high baseflow index and/or low population density were found to return a lower RMSE on load estimates when sampled infrequently than those with a tow baseflow index and high population density. Catchment size was not shown to be important, though a limitation of this study is that daily records may fail to capture the full range of P export behaviour in smaller catchments with flashy hydrographs, leading to an underestimate of uncertainty in Load estimates for such catchments. Further analysis of sub-daily records is needed to investigate this fully. Here, recommendations are given on load estimation methodologies for different catchment types sampled at different frequencies, and the ways in which this analysis can be used to identify observational error and uncertainty for model calibration and nutrient budgeting studies. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper describes an assessment of the nitrogen and phosphorus dynamics of the River Kennet in the south east of England. The Kennet catchment (1200 km(2)) is a predominantly groundwater fed river impacted by agricultural and sewage sources of nutrient (nitrogen and phosphorus) pollution. The results from a suite of simulation models are integrated to assess the key spatial and temporal variations in the nitrogen (N) and phosphorus (P) chemistry, and the influence of changes in phosphorous inputs from a Sewage Treatment Works on the macrophyte and epiphyte growth patterns. The models used are the Export Co-efficient model, the Integrated Nitrogen in Catchments model, and a new model of in-stream phosphorus and macrophyte dynamics: the 'Kennet' model. The paper concludes with a discussion on the present state of knowledge regarding the water quality functioning, future research needs regarding environmental modelling and the use of models as management tools for large, nutrient impacted riverine systems. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
Snow is an important component of the land surface, and the choice of products for assimilation or verification can have a large impact on the surface analysis. This paper introduces the many sources of snow data that are currently available, both in situ and from remote sensing from space, along with some recent developments. Snow extent products are derived from the biggest range of sensors and are the most widely used, while information on snow mass from space is still too error-prone to be used successfully in assimilation schemes.
Resumo:
The phytoestrogens genistein, daidzein and the daidzein metabolite equol have been shown previously to possess oestrogen agonist activity. However, following consumption of soya diets, they are found in the body not only as aglycones but also as metabolites conjugated at their 4'- and 7-hydroxyl groups with sulphate. This paper describes the effects of monosulphation on the oestrogen agonist properties of these three phytoestrogens in MCF-7 human breast cancer cells in terms of their relative ability to compete with [H-3]oestradiol for binding to oestrogen receptor (ER), to induce a stably transfected oestrogen-responsive reporter gene (ERE-CAT) and to stimulate cell growth. In no case did sulphation abolish activity. The 4'-sulphadon of genistein reduced oestrogen agonist activity to a small extent in whole-cell assays but increased the relative binding affinity to ER. The 7-sulphation of genistein, and also of equol, reduced oestrogen agonist activity substantially in all assays. By contrast, the position of monosulphation of daidzein acted in an opposing manner on oestrogen agonist activity. Sulphation at the 4'-position of daidzein resulted in a modest reduction in oestrogen agonist activity but sulphation of daidzein at the 7-position resulted in an increase in oestrogen agonist activity. Molecular modelling and docking studies suggested that the inverse effects of sulphation could be explained by the binding of daidzein into the ligand-binding domain of the ER in the opposite orientation compared with genistein and equol. This is the first report of sulphation enhancing activity of an isoflavone and inverse effects of sulphation between individual phytoestrogens.
Resumo:
Details about the parameters of kinetic systems are crucial for progress in both medical and industrial research, including drug development, clinical diagnosis and biotechnology applications. Such details must be collected by a series of kinetic experiments and investigations. The correct design of the experiment is essential to collecting data suitable for analysis, modelling and deriving the correct information. We have developed a systematic and iterative Bayesian method and sets of rules for the design of enzyme kinetic experiments. Our method selects the optimum design to collect data suitable for accurate modelling and analysis and minimises the error in the parameters estimated. The rules select features of the design such as the substrate range and the number of measurements. We show here that this method can be directly applied to the study of other important kinetic systems, including drug transport, receptor binding, microbial culture and cell transport kinetics. It is possible to reduce the errors in the estimated parameters and, most importantly, increase the efficiency and cost-effectiveness by reducing the necessary amount of experiments and data points measured. (C) 2003 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Kinetic studies on the AR (aldose reductase) protein have shown that it does not behave as a classical enzyme in relation to ring aldose sugars. As with non-enzymatic glycation reactions, there is probably a free radical element involved derived from monosaccharide autoxidation. in the case of AR, there is free radical oxidation of NADPH by autoxidizing monosaccharides, which is enhanced in the presence of the NADPH-binding protein. Thus any assay for AR based on the oxidation of NADPH in the presence of autoxidizing monosaccharides is invalid, and tissue AR measurements based on this method are also invalid, and should be reassessed. AR exhibits broad specificity for both hydrophilic and hydrophobic aldehydes that suggests that the protein may be involved in detoxification. The last thing we would want to do is to inhibit it. ARIs (AR inhibitors) have a number of actions in the cell which are not specific, and which do not involve them binding to AR. These include peroxy-radical scavenging and effects of metal ion chelation. The AR/ARI story emphasizes the importance of correct experimental design in all biocatalytic experiments. Developing the use of Bayesian utility functions, we have used a systematic method to identify the optimum experimental designs for a number of kinetic model data sets. This has led to the identification of trends between kinetic model types, sets of design rules and the key conclusion that such designs should be based on some prior knowledge of K-m and/or the kinetic model. We suggest an optimal and iterative method for selecting features of the design such as the substrate range, number of measurements and choice of intermediate points. The final design collects data suitable for accurate modelling and analysis and minimizes the error in the parameters estimated, and is suitable for simple or complex steady-state models.
Resumo:
Purpose: Acquiring details of kinetic parameters of enzymes is crucial to biochemical understanding, drug development, and clinical diagnosis in ocular diseases. The correct design of an experiment is critical to collecting data suitable for analysis, modelling and deriving the correct information. As classical design methods are not targeted to the more complex kinetics being frequently studied, attention is needed to estimate parameters of such models with low variance. Methods: We have developed Bayesian utility functions to minimise kinetic parameter variance involving differentiation of model expressions and matrix inversion. These have been applied to the simple kinetics of the enzymes in the glyoxalase pathway (of importance in posttranslational modification of proteins in cataract), and the complex kinetics of lens aldehyde dehydrogenase (also of relevance to cataract). Results: Our successful application of Bayesian statistics has allowed us to identify a set of rules for designing optimum kinetic experiments iteratively. Most importantly, the distribution of points in the range is critical; it is not simply a matter of even or multiple increases. At least 60 % must be below the KM (or plural if more than one dissociation constant) and 40% above. This choice halves the variance found using a simple even spread across the range.With both the glyoxalase system and lens aldehyde dehydrogenase we have significantly improved the variance of kinetic parameter estimation while reducing the number and costs of experiments. Conclusions: We have developed an optimal and iterative method for selecting features of design such as substrate range, number of measurements and choice of intermediate points. Our novel approach minimises parameter error and costs, and maximises experimental efficiency. It is applicable to many areas of ocular drug design, including receptor-ligand binding and immunoglobulin binding, and should be an important tool in ocular drug discovery.
Resumo:
In areas such as drug development, clinical diagnosis and biotechnology research, acquiring details about the kinetic parameters of enzymes is crucial. The correct design of an experiment is critical to collecting data suitable for analysis, modelling and deriving the correct information. As classical design methods are not targeted to the more complex kinetics being frequently studied, attention is needed to estimate parameters of such models with low variance. We demonstrate that a Bayesian approach (the use of prior knowledge) can produce major gains quantifiable in terms of information, productivity and accuracy of each experiment. Developing the use of Bayesian Utility functions, we have used a systematic method to identify the optimum experimental designs for a number of kinetic model data sets. This has enabled the identification of trends between kinetic model types, sets of design rules and the key conclusion that such designs should be based on some prior knowledge of K-M and/or the kinetic model. We suggest an optimal and iterative method for selecting features of the design such as the substrate range, number of measurements and choice of intermediate points. The final design collects data suitable for accurate modelling and analysis and minimises the error in the parameters estimated. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
This article introduces a quantitative approach to e-commerce system evaluation based on the theory of process simulation. The general concept of e-commerce system simulation is presented based on the considerations of some limitations in e-commerce system development such as the huge amount of initial investments of time and money, and the long period from business planning to system development, then to system test and operation, and finally to exact return; in other words, currently used system analysis and development method cannot tell investors about some keen attentions such as how good their e-commerce system could be, how many investment repayments they could have, and which area they should improve regarding the initial business plan. In order to exam the value and its potential effects of an e-commerce business plan, it is necessary to use a quantitative evaluation approach and the authors of this article believe that process simulation is an appropriate option. The overall objective of this article is to apply the theory of process simulation to e-commerce system evaluation, and the authors will achieve this though an experimental study on a business plan for online construction and demolition waste exchange. The methodologies adopted in this article include literature review, system analysis and development, simulation modelling and analysis, and case study. The results from this article include the concept of e-commerce system simulation, a comprehensive review of simulation methods adopted in e-commerce system evaluation, and a real case study of applying simulation to e-commerce system evaluation. Furthermore, the authors hope that the adoption and implementation of the process simulation approach can effectively support business decision-making, and improve the efficiency of e-commerce systems.
Resumo:
Purpose – To describe some research done, as part of an EPSRC funded project, to assist engineers working together on collaborative tasks. Design/methodology/approach – Distributed finite state modelling and agent techniques are used successfully in a new hybrid self-organising decision making system applied to collaborative work support. For the particular application, analysis of the tasks involved has been performed and these tasks are modelled. The system then employs a novel generic agent model, where task and domain knowledge are isolated from the support system, which provides relevant information to the engineers. Findings – The method is applied in the despatch of transmission commands within the control room of The National Grid Company Plc (NGC) – tasks are completed significantly faster when the system is utilised. Research limitations/implications – The paper describes a generic approach and it would be interesting to investigate how well it works in other applications. Practical implications – Although only one application has been studied, the methodology could equally be applied to a general class of cooperative work environments. Originality/value – One key part of the work is the novel generic agent model that enables the task and domain knowledge, which are application specific, to be isolated from the support system, and hence allows the method to be applied in other domains.
Resumo:
Driven by a range of modern applications that includes telecommunications, e-business and on-line social interaction, recent ideas in complex networks can be extended to the case of time-varying connectivity. Here we propose a general frame- work for modelling and simulating such dynamic networks, and we explain how the long time behaviour may reveal important information about the mechanisms underlying the evolution.
Resumo:
An important goal in computational neuroanatomy is the complete and accurate simulation of neuronal morphology. We are developing computational tools to model three-dimensional dendritic structures based on sets of stochastic rules. This paper reports an extensive, quantitative anatomical characterization of simulated motoneurons and Purkinje cells. We used several local and global algorithms implemented in the L-Neuron and ArborVitae programs to generate sets of virtual neurons. Parameters statistics for all algorithms were measured from experimental data, thus providing a compact and consistent description of these morphological classes. We compared the emergent anatomical features of each group of virtual neurons with those of the experimental database in order to gain insights on the plausibility of the model assumptions, potential improvements to the algorithms, and non-trivial relations among morphological parameters. Algorithms mainly based on local constraints (e.g., branch diameter) were successful in reproducing many morphological properties of both motoneurons and Purkinje cells (e.g. total length, asymmetry, number of bifurcations). The addition of global constraints (e.g., trophic factors) improved the angle-dependent emergent characteristics (average Euclidean distance from the soma to the dendritic terminations, dendritic spread). Virtual neurons systematically displayed greater anatomical variability than real cells, suggesting the need for additional constraints in the models. For several emergent anatomical properties, a specific algorithm reproduced the experimental statistics better than the others did. However, relative performances were often reversed for different anatomical properties and/or morphological classes. Thus, combining the strengths of alternative generative models could lead to comprehensive algorithms for the complete and accurate simulation of dendritic morphology.
Resumo:
*** Purpose – Computer tomography (CT) for 3D reconstruction entails a huge number of coplanar fan-beam projections for each of a large number of 2D slice images, and excessive radiation intensities and dosages. For some applications its rate of throughput is also inadequate. A technique for overcoming these limitations is outlined. *** Design methodology/approach – A novel method to reconstruct 3D surface models of objects is presented, using, typically, ten, 2D projective images. These images are generated by relative motion between this set of objects and a set of ten fanbeam X-ray sources and sensors, with their viewing axes suitably distributed in 2D angular space. *** Findings – The method entails a radiation dosage several orders of magnitude lower than CT, and requires far less computational power. Experimental results are given to illustrate the capability of the technique *** Practical implications – The substantially lower cost of the method and, more particularly, its dramatically lower irradiation make it relevant to many applications precluded by current techniques *** Originality/value – The method can be used in many applications such as aircraft hold-luggage screening, 3D industrial modelling and measurement, and it should also have important applications to medical diagnosis and surgery.
Resumo:
In 2003 the European Commission started using Impact Assessment (IA) as the main empirical basis for its major policy proposals. The aim was to systematically assess ex ante the economic, social and environmental impacts of EU policy proposals. In parallel, research proliferated in search for theoretical grounds for IAs and in an attempt to evaluate empirically the performance of the first sets of IAs produced by the European Commission. This paper combines conceptual and evaluative studies carried out in the first five years of EU IAs. It concludes that the great discrepancy between rationale and practice calls for a different theoretical focus and a higher emphasis on evaluating empirically crucial risk economics aspects of IAs, such as the value of statistical life, price of carbon, the integration of macroeconomic modelling and scenario analysis.