78 resultados para Minimum spanning forests


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates that the use of GARCH-type models for the calculation of minimum capital risk requirements (MCRRs) may lead to the production of inaccurate and therefore inefficient capital requirements. We show that this inaccuracy stems from the fact that GARCH models typically overstate the degree of persistence in return volatility. A simple modification to the model is found to improve the accuracy of MCRR estimates in both back- and out-of-sample tests. Given that internal risk management models are currently in widespread usage in some parts of the world (most notably the USA), and will soon be permitted for EC banks and investment firms, we believe that our paper should serve as a valuable caution to risk management practitioners who are using, or intend to use this popular class of models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method of automatically identifying and tracking polar-cap plasma patches, utilising data inversion and feature-tracking methods, is presented. A well-established and widely used 4-D ionospheric imaging algorithm, the Multi-Instrument Data Assimilation System (MIDAS), inverts slant total electron content (TEC) data from ground-based Global Navigation Satellite System (GNSS) receivers to produce images of the free electron distribution in the polar-cap ionosphere. These are integrated to form vertical TEC maps. A flexible feature-tracking algorithm, TRACK, previously used extensively in meteorological storm-tracking studies is used to identify and track maxima in the resulting 2-D data fields. Various criteria are used to discriminate between genuine patches and "false-positive" maxima such as the continuously moving day-side maximum, which results from the Earth's rotation rather than plasma motion. Results for a 12-month period at solar minimum, when extensive validation data are available, are presented. The method identifies 71 separate structures consistent with patch motion during this time. The limitations of solar minimum and the consequent small number of patches make climatological inferences difficult, but the feasibility of the method for patches larger than approximately 500 km in scale is demonstrated and a larger study incorporating other parts of the solar cycle is warranted. Possible further optimisation of discrimination criteria, particularly regarding the definition of a patch in terms of its plasma concentration enhancement over the surrounding background, may improve results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pollen data from China for 6000 and 18,000 14C yr bp were compiled and used to reconstruct palaeovegetation patterns, using complete taxon lists where possible and a biomization procedure that entailed the assignment of 645 pollen taxa to plant functional types. A set of 658 modern pollen samples spanning all biomes and regions provided a comprehensive test for this procedure and showed convincing agreement between reconstructed biomes and present natural vegetation types, both geographically and in terms of the elevation gradients in mountain regions of north-eastern and south-western China. The 6000 14C yr bp map confirms earlier studies in showing that the forest biomes in eastern China were systematically shifted northwards and extended westwards during the mid-Holocene. Tropical rain forest occurred on mainland China at sites characterized today by either tropical seasonal or broadleaved evergreen/warm mixed forest. Broadleaved evergreen/warm mixed forest occurred further north than today, and at higher elevation sites within the modern latitudinal range of this biome. The northern limit of temperate deciduous forest was shifted c. 800 km north relative to today. The 18,000 14C yr bp map shows that steppe and even desert vegetation extended to the modern coast of eastern China at the last glacial maximum, replacing today’s temperate deciduous forest. Tropical forests were excluded from China and broadleaved evergreen/warm mixed forest had retreated to tropical latitudes, while taiga extended southwards to c. 43°N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The area of Arctic September sea ice has diminished from about 7 million km2 in the 1990s to less than 5 million km2 in five of the past seven years, with a record minimum of 3.6 million km2 in 2012 (ref. 1). The strength of this decrease is greater than expected by the scientific community, the reasons for this are not fully understood, and its simulation is an on-going challenge for existing climate models2, 3. With growing Arctic marine activity there is an urgent demand for forecasting Arctic summer sea ice4. Previous attempts at seasonal forecasts of ice extent were of limited skill5, 6, 7, 8, 9. However, here we show that the Arctic sea-ice minimum can be accurately forecasted from melt-pond area in spring. We find a strong correlation between the spring pond fraction and September sea-ice extent. This is explained by a positive feedback mechanism: more ponds reduce the albedo; a lower albedo causes more melting; more melting increases pond fraction. Our results help explain the acceleration of Arctic sea-ice decrease during the past decade. The inclusion of our new melt-pond model10 promises to improve the skill of future forecast and climate models in Arctic regions and beyond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inter-bedded volcanic and organic sediments from Erazo (Ecuador) indicate the presence of four different forest assemblages on the eastern Andean flank during the middle Pleistocene. Radiometric dates (40Ar–39Ar) obtained fromthe volcanic ash indicate that deposition occurred between 620,000 and 192,000 years ago. Examination of the organic sediment composition and the fossil pollen, wood and charcoal it contains provides insight into depositional environment, vegetation assemblage and fire history. The high organic content and abundance of macro fossils found throughout the sediment suggest that during the period of deposition the local environment was either a swamp or a shallow water body. The correlation of fire activity (peaks in charcoal abundance) with volcanic ash deposits through most of the record suggests that volcanoes were the main source of ignition. The low abundance of grass (typically b10%) throughout the sedimentary sequence along with the low abundance of other taxa indicative of open vegetation suggests the persistence of forest at Erazo. Four types of forest assemblage were identified (with the first taxa as the most dominant): i) Alnus-Arecaceae, ii) Miconia- Melastomataceae/Combretaceae-Moraceae/Urticaceae, iii) Arecaceae-Alnus, and iv) Podocarpus with Oreopanax sp. and Melastomataceae/Combretaceae. Changes in the forest floristic composition indicate high vegetation turnover and reassortment of taxa between upper and lower montane forests during the middle Pleistocene as well as the persistence of forest cover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Variation in photosynthetic activity of trees induced by climatic stress can be effectively evaluated using remote sensing data. Although adverse effects of climate on temperate forests have been subjected to increased scrutiny, the suitability of remote sensing imagery for identification of drought stress in such forests has not been explored fully. Aim: To evaluate the sensitivity of MODIS-based vegetation index to heat and drought stress in temperate forests, and explore the differences in stress response of oaks and beech. Methods: We identified 8 oak and 13 beech pure and mature stands, each covering between 4 and 13 MODIS pixels. For each pixel, we extracted a time series of MODIS NDVI from 2000 to 2010. We identified all sequences of continuous unseasonal NDVI decline to be used as the response variable indicative of environmental stress. Neural Networks-based regression modelling was then applied to identify the climatic variables that best explain observed NDVI declines. Results: Tested variables explained 84–97% of the variation in NDVI, whilst air temperature-related climate extremes were found to be the most influential. Beech showed a linear response to the most influential climatic predictors, while oak responded in a unimodal pattern suggesting a better coping mechanism. Conclusions: MODIS NDVI has proved sufficiently sensitive as a stand-level indicator of climatic stress acting upon temperate broadleaf forests, leading to its potential use in predicting drought stress from meteorological observations and improving parameterisation of forest stress indices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop an on-line Gaussian mixture density estimator (OGMDE) in the complex-valued domain to facilitate adaptive minimum bit-error-rate (MBER) beamforming receiver for multiple antenna based space-division multiple access systems. Specifically, the novel OGMDE is proposed to adaptively model the probability density function of the beamformer’s output by tracking the incoming data sample by sample. With the aid of the proposed OGMDE, our adaptive beamformer is capable of updating the beamformer’s weights sample by sample to directly minimize the achievable bit error rate (BER). We show that this OGMDE based MBER beamformer outperforms the existing on-line MBER beamformer, known as the least BER beamformer, in terms of both the convergence speed and the achievable BER.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The last interglaciation (substage 5e) provides an opportunity to examine the effects of extreme orbital changes on regional climates. We have made two atmospheric general circulation model experiments: P+T+ approximated the northern hemisphere seasonality maximum near the beginning of 5e; P-T- approximated the minimum near the end of 5e. Simulated regional climate changes have been translated into biome changes using a physiologically based model of global vegetation types. Major climatic and vegetational changes were simulated for the northern hemisphere extratropics, due to radiational effects that were both amplified and modified by atmospheric circulation changes and sea-ice feedback. P+T+ showed mid-continental summers up to 8°C warmer than present. Mid-latitude winters were 2-4°C cooler than present but in the Arctic, summer warmth reduced sea-ice extent and thickness, producing winters 2-8°C warmer than present. The tundra and taiga biomes were displaced poleward, while warm-summer steppes expanded in the mid latitudes due to drought. P-T- showed summers up to 5°C cooler than present, especially in mid latitudes. Sea ice and snowpack were thicker and lasted longer; polar desert, tundra, and taiga biomes were displaced equatorward, while cool-summer steppes and semideserts expanded due to the cooling. A slight winter warming in mid latitudes, however, caused warm-temperate evergreen forests and scrub to expand poleward. Such qualitative contrasts in the direction of climate and vegetation change during 5e should be identifiable in the paleorecord

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Any reduction in global mean near-surface temperature due to a future decline in solar activity is likely to be a small fraction of projected anthropogenic warming. However, variability in ultraviolet solar irradiance is linked to modulation of the Arctic and North Atlantic Oscillations, suggesting the potential for larger regional surface climate effects. Here, we explore possible impacts through two experiments designed to bracket uncertainty in ultraviolet irradiance in a scenario in which future solar activity decreases to Maunder Minimum-like conditions by 2050. Both experiments show regional structure in the wintertime response, resembling the North Atlantic Oscillation, with enhanced relative cooling over northern Eurasia and the eastern United States. For a high-end decline in solar ultraviolet irradiance, the impact on winter northern European surface temperatures over the late twenty-first century could be a significant fraction of the difference in climate change between plausible AR5 scenarios of greenhouse gas concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been suggested that the Sun may evolve into a period of lower activity over the 21st century. This study examines the potential climate impacts of the onset of an extreme ‘Maunder Minimum like’ grand solar minimum using a comprehensive global climate model. Over the second half of the 21st century, the scenario assumes a decrease in total solar irradiance of 0.12% compared to a reference RCP8.5 experiment. The decrease in solar irradiance cools the stratopause (~1 hPa) in the annual and global mean by 1.4 K. The impact on global mean near-surface temperature is small (~−0.1 K), but larger changes in regional climate occur during the stratospheric dynamically active seasons. In Northern hemisphere (NH) winter-time, there is a weakening of the stratospheric westerly jet by up to ~3-4 m s1, with the largest changes occurring in January-February. This is accompanied by a deepening of the Aleutian low at the surface and an increase in blocking over northern Europe and the north Pacific. There is also an equatorward shift in the Southern hemisphere (SH) midlatitude eddy-driven jet in austral spring. The occurrence of an amplified regional response during winter and spring suggests a contribution from a top-down pathway for solar-climate coupling; this is tested using an experiment in which ultraviolet (200–320 nm) radiation is decreased in isolation of other changes. The results show that a large decline in solar activity over the 21st century could have important impacts on the stratosphere and regional surface climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations of the Sun’s corona during the space era have led to a picture of relatively constant, but cyclically varying solar output and structure. Longer-term, more indirect measurements, such as from 10Be, coupled by other albeit less reliable contemporaneous reports, however, suggest periods of significant departure from this standard. The Maunder Minimum was one such epoch where: (1) sunspots effectively disappeared for long intervals during a 70 yr period; (2) eclipse observations suggested the distinct lack of a visible K-corona but possible appearance of the F-corona; (3) reports of aurora were notably reduced; and (4) cosmic ray intensities at Earth were inferred to be substantially higher. Using a global thermodynamic MHD model, we have constructed a range of possible coronal configurations for the Maunder Minimum period and compared their predictions with these limited observational constraints. We conclude that the most likely state of the corona during—at least—the later portion of the Maunder Minimum was not merely that of the 2008/2009 solar minimum, as has been suggested recently, but rather a state devoid of any large-scale structure, driven by a photospheric field composed of only ephemeral regions, and likely substantially reduced in strength. Moreover, we suggest that the Sun evolved from a 2008/2009-like configuration at the start of the Maunder Minimum toward an ephemeral-only configuration by the end of it, supporting a prediction that we may be on the cusp of a new grand solar minimum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. Although the time of the Maunder minimum (1645–1715) is widely known as a period of extremely low solar activity, it is still being debated whether solar activity during that period might have been moderate or even higher than the current solar cycle (number 24). We have revisited all existing evidence and datasets, both direct and indirect, to assess the level of solar activity during the Maunder minimum. Methods. We discuss the East Asian naked-eye sunspot observations, the telescopic solar observations, the fraction of sunspot active days, the latitudinal extent of sunspot positions, auroral sightings at high latitudes, cosmogenic radionuclide data as well as solar eclipse observations for that period. We also consider peculiar features of the Sun (very strong hemispheric asymmetry of the sunspot location, unusual differential rotation and the lack of the K-corona) that imply a special mode of solar activity during the Maunder minimum. Results. The level of solar activity during the Maunder minimum is reassessed on the basis of all available datasets. Conclusions. We conclude that solar activity was indeed at an exceptionally low level during the Maunder minimum. Although the exact level is still unclear, it was definitely lower than during the Dalton minimum of around 1800 and significantly below that of the current solar cycle #24. Claims of a moderate-to-high level of solar activity during the Maunder minimum are rejected with a high confidence level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background, aim and scope Soil organic matter (SOM) is known to increase with time as landscapes recover after a major disturbance; however, little is known about the evolution of the chemistry of SOM in reconstructed ecosystems. In this study, we assessed the development of SOM chemistry in a chronosequence (space for time substitution) of restored Jarrah forest sites in Western Australia. Materials and methods Replicated samples were taken at the surface of the mineral soil as well as deeper in the profile at sites of 1, 3, 6, 9, 12, and 17 years of age. A molecular approach was developed to distinguish and quantify numerous individual compounds in SOM. This used accelerated solvent extraction in conjunction with gas chromatography mass spectrometry. A novel multivariate statistical approach was used to assess changes in accelerated solvent extraction (ASE)-gas chromatography-mass spectrometry (GCMS) spectra. This enabled us to track SOM developmental trajectories with restoration time. Results Results showed total carbon concentrations approached that of native forests soils by 17 years of restoration. Using the relate protocol in PRIMER, we demonstrated an overall linear relationship with site age at both depths, indicating that changes in SOM chemistry were occurring. Conclusions The surface soils were seen to approach native molecular compositions while the deeper soil retained a more stable chemical signature, suggesting litter from the developing diverse plant community has altered SOM near the surface. Our new approach for assessing SOM development, combining ASE-GCMS with illuminating multivariate statistical analysis, holds great promise to more fully develop ASE for the characterisation of SOM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Hale cycle, one complete magnetic cycle of the Sun, spans two complete Schwabe cycles (also referred to as sunspot and, more generally, solar cycles). The approximately 22-year Hale cycle is seen in magnetic polarities of both sunspots and polar fields, as well as in the intensity of galactic cosmic rays reaching Earth, with odd- and even-numbered solar cycles displaying qualitatively different waveforms. Correct numbering of solar cycles also underpins empirical cycle-to-cycle relations which are used as first-order tests of stellar dynamo models. There has been much debate about whether the unusually long solar cycle 4 (SC4), spanning- 1784–1799, was actually two shorter solar cycles combined as a result of poor data coverage in the original Wolf sunspot number record. Indeed, the group sunspot number does show a small increase around 1794–1799 and there is evidence of an increase in the mean latitude of sunspots at this time, suggesting the existence of a cycle ‘‘4b’’. In this study, we use cosmogenic radionuclide data and associated reconstructions of the heliospheric magnetic field (HMF) to show that the Hale cycle has persisted over the last 300 years and that data prior to 1800 are more consistent with cycle 4 being a single long cycle (the ‘‘no SC4b’’ scenario). We also investigate the effect of cycle 4b on the HMF using an open solar flux (OSF) continuity model, in which the OSF source term is related to sunspot number and the OSF loss term is determined by the heliospheric current sheet tilt, assumed to be a simple function of solar cycle phase. The results are surprising; Without SC4b, the HMF shows two distinct peaks in the 1784–1799 interval, while the addition of SC4b removes the secondary peak, as the OSF loss term acts in opposition to the later rise in sunspot number. The timing and magnitude of the main SC4 HMF peak is also significantly changed by the addition of SC4b. These results are compared with the cosmogenic isotope reconstructions of HMF and historical aurora records. These data marginally favour the existence of SC4b (the ‘‘SC4b’’ scenario), though the result is less certain than that based on the persistence of the Hale cycle. Thus while the current uncertainties in the observations preclude any definitive conclusions, the data favour the ‘‘no SC4b’’ scenario. Future improvements to cosmogenic isotope reconstructions of the HMF, through either improved modelling or additional ice cores from well-separated geographic locations, may enable questions of the existence of SC4b and the phase of Hale cycle prior to the Maunder minimum to be settled conclusively.