115 resultados para Manganese(II) complexes
Resumo:
Three copper(II) complexes, [CuL1], [CuL2] and [CuL3] where L-1, L-2 and L-3 are the tetradentate di-Schiff-base ligands prepared by the condensation of acetylacetone and appropriate diamines (e.g. 1,2-diaminoethane, 1,2-diaminopropane and 1,3-diaminopropane, respectively) in 2:1 ratios, have been prepared. These complexes act as host molecules and include a guest sodium ion by coordinating through the oxygen atoms to result in corresponding new trinuclear complexes, [(CuL1)(2)Na(ClO4)(H2O)][CuL1], [(CuL2)(2)Na(ClO4)(H2O)] (2) and [(CuL3)(2)Na(ClO4)(H2O)] (3) when crystallized from methanol solution containing sodium perchlorate. All three complexes have been characterized by single crystal X-ray crystallography. In all the complexes, the sodium cation has a six-coordinate distorted octahedral environment being bonded to four oxygen atoms from two Schiff-base complexes of Cu(II) in addition to a perchlorate anion and a water molecule. The copper atoms are four coordinate in a square planar environment being bonded to two oxygen atoms and two nitrogen atoms of the Schiff-base ligand. The variable temperature susceptibilities for complexes 1-3 were measured over the range 2-300 K. The isotropic Hamiltonian, H = g(1)beta HS1 + g(2)beta HS2 + J(12)S(1)S(2) + g(3)beta HS3 for complex 1 and H = g(1)beta HS1 + g2 beta HS2 +J(12)S(1)S(2) for complexes 2 and 3 has been used to interpret the magnetic data. The best fit parameters obtained are: g(1) = g(2) = 2.07(0), J = - 1.09(1) cm(-1) for complex 1, g(1) = g(2) = 2.06(0), J = -0.55(1) cm(-1) for complex 2 and g1 = g2 = 2.07(0).J = -0.80(1) cm(-1) for 3. Electrochemical studies displayed an irreversible Cu(II)/Cu(I) one-electron reduction process. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Three new linear trinuclear nickel(II) complexes, [Ni-3(salpen)(2)(OAc)(2)(H2O)(2)]center dot 4H(2)O (1) (OAc = acetate, CH3COO-), [Ni-3(salpen)(2)(OBz)(2)] (2) (OBz=benzoate, PhCOO-) and [Ni-3(salpen)(2)(OCn)(2)(CH3CN)(2)] (4) (OCn = cinnamate, PhCH=CHCOO-), H(2)salpen = tetradentate ligand, N,N'-bis(salicylidene)-1,3-pentanediamine have been synthesized and characterized structurally and magnetically. The choice of solvent for growing single crystal was made by inspecting the morphology of the initially obtained solids with the help of SEM study. The magnetic properties of a closely related complex, [Ni-3(salpen)(2)(OPh)(2)(EtOH)] (3) (OPh = phenyl acetate, PhCH2COO-) whose structure and solution properties have been reported recently, has also been studied here. The structural analyses reveal that both phenoxo and carboxylate bridging are present in all the complexes and the three Ni(II) atoms remain in linear disposition. Although the Schiff base ligand and the syn-syn bridging bidentate mode of the carboxylate group remain the same in complexes 1-4, the change of alkyl/aryl group of the carboxylates brings about systematic variations between six- and five-coordination in the geometry of the terminal Ni(II) centres of the trinuclear units. The steric demand as well as hydrophobic nature of the alkyl/aryl group of the carboxylate is found to play a crucial role in the tuning of the geometry. Variable-temperature (2-300 K) magnetic susceptibility measurements show that complexes 1-4 are antiferromagnetically coupled (J = -3.2(1), -4.6(1). -3.2(1) and -2.8(1) cm(-1) in 1-4, respectively). Calculations of the zero-field splitting parameter indicate that the values of D for complexes 1-4 are in the high range (D = +9.1(2), +14.2(2), +9.8(2) and +8.6(1) cm(-1) for 1-4, respectively). The highest D value of +14.2(2) and +9.8(2) cm(-1) for complexes 2 and 3, respectively, are consistent with the pentacoordinated geometry of the two terminal nickel(II) ions in 2 and one terminal nickel(II) ion in 3. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Two tridentate N,N,O donor Schiff bases, HL1 (4-(2-ethylamino-ethylimino)-pentan-2-one) and HL2 (3-(2-amino-propylimino)-1-phenyl-butan-1-one) on reaction with Cu-II acetate in presence of triethyl amine yielded two basal-apical, mono-atomic acetate oxygen-bridging dimeric copper(II) complexes, [Cu2L21(OAc)(2)] (1), [Cu2L22(OAc)(2)] (2). Whereas two other similar tridentate ligands HL3 (4-(2-amino-propylimino)-pentane-2-one) and HL3 (3-(2-amino-ethylimino)-1-phenyl-butan-1-one) under the same conditions produced a mixture of the corresponding dinners and a one-dimensional alternating chain of the dimer and copper acetate moiety, [Cu4L23(OAc)(6)](n) (3) and [Cu4L24(OAc)(6)](n) (4), formed by a very rare mu(3) bridging mode of the acetate ion. All four complexes (1-4) have been characterized by X-ray crystallography. The isotropic Hamiltonian, H = -JS(1)S(2) has been used to interpret the magnetic data. Magnetic measurements of 1 and 2 in the temperature range 2-300 K reveal a very weak antiferromagnetic coupling for both complexes U = -0.56 and -1.19 cm(-1) for 1 and 2, respectively). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Three new copper(II) complexes [(CuLN3)-N-1](2) (1), [(CuLN3)-N-2] (2) and [(CuLN3)-N-3] (3) with three very similar tridentate Schiff base ligands [HL1=6-diethylamino-3-methyl-1-phenyl-4-azahex-3-en1- one, HL2= 6-amino-3-methyl-1-phenyl-4-azahex-3-en-1-one and HL3= 6-amino-3-methyl1- phenyl-4-azasept-3-en-1-one] have been synthesized and structurally characterized by X-ray crystallography. In complex 1 half of the molecules are basal-apical, end-on azido bridged dimers and the remaining half are square-planar monomers whereas all the molecules in complexes 2 and 3 are monomers with square-planar geometry around Cu(II). A competition between the coordinate bond and H-bond seems to be responsible for the difference in structure of the complexes.
Resumo:
Three novel mixed bridged trinuclear and one tetranuclear copper(II) complexes of tridentate NNO donor Schiff base ligands [Cu-3(L-1)(2)(mu(LI)-N-3)(2)(CH3OH)(2)(BF2)(2)] (1), [Cu-3(L-1)(2)(mu(LI)-NO3-I kappa O.2 kappa O')(2)] (2), [Cu-3(L-2)(2)(mu(LI)-N-3)(2)(mu-NOI-I kappa O 2 kappa O')(2)] (3) and [Cu-4(L-3)(2)(mu(LI)-N-3)(4)(mu-CH3COO-I kappa O 2 kappa O')(2)] (4) have been synthesized by reaction of the respective tridentate ligands (L-1 = 2[1-(2-dimethylamino-ethylimino)-ethyl]-phenol, L-2 = 2[1-(2-diethylamino-ethylimino)-ethyl]-phenol, L-3 = 2-[1-(2-dimethylamino-ethylimino)-methyl]-phenol) with the corresponding copper(II) salts in the presence of NaN3 The complexes are characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements Complex 1 is composed of two terminal [Cu(L-1)(mu(LI)-N-3)] units connected by a central [Cu(BF4)(2)] unit through nitrogen atoms of end-on azido ligands and a phenoxo oxygen atom of the tridentate ligand The structures of 2 and 3 are very similar, the only difference is that the central unit is [Cu(NO1)(2)] and the nitrate group forms an additional mu-NO3-I kappa O 2 kappa O' bridge between the terminal and central copper atoms In complex 4, the central unit is a di-mu(L1)-N-3 bridged dicopper entity, [Cu-2(mu(L1)-N-3)(2)(CH3COO)(2)] that connects two terminal [Cu(L-3)(mu(L1)-N-3)] units through end-on azido; phenoxo oxygen and mu-CH3COO-1 kappa O center dot 2 kappa O' triple bridges to result in a tetranuclear unit Analyses of variable-temperature magnetic susceptibility data indicates that there is a global weak antiferromagnetic interaction between the copper(II) ions in complexes 1-3, with the exchange parameter J of -9 86, -11 6 and -19 98 cm(-1) for 1-3, respectively In complex 4 theoretical calculations show the presence of an antiferromagnetic coupling in the triple bridging ligands (acetato, phenoxo and azido) while the interaction through the double end-on azido bridging ligand is strongly ferromagnetic.
Resumo:
Two new mono-aqua-bridged dinuclear Cu(II) complexes of tridentate NNO Schiff bases, [Cu-2(mu-H2O)L-2(1)(H2O)(2)](BF4)(2)center dot 2H(2)O (1) and [Cu-2(mu-H2O)L-2(2)(H2O)(2)](BF4)(2)center dot 2H(2)O (2) where HL1 = 2-[1-(2-dimethylamino-ethylimino)-ethyl]-phenol and HL2 =2-[(2-dimethylamino-ethylimino)-methyl]-phenol were synthesized. Both the complexes were characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements. For both the complexes each Cu(II) ion is in a square-pyramidal environment being bonded to three atoms from the tridentate NNO Schiff base and a terminal H2O molecule in the equatorial plane; a second H2O ligand acts as a bridge between the two Cu(II) centres through the axial positions. Hydrogen bonds between the terminal H2O ligand and the Schiff base of the adjacent centre complete the intra-dimer linkages. Variable-temperature (4-300 K) magnetic susceptibility measurement shows the presence of significant antiferromagnetic coupling for both the complexes (J = -12.2 and -12.5 cm(-1), respectively, for 1 and 2), mediated mainly through the intra-dimer H-bonds.
Resumo:
Addition of 1,4-dithiols to dichloromethane solutions of [PtCl2(P-P)] (P-P = (PPh3)2, Ph2P(CH2)3PPh2, Phd2P(CH2)4PPh2; 1,4-dithiols = HS(CH2)4SH, (−)DIOSH2 (2,3-O-isopropylidene-1,4-dithiol-l-threitol), BINASH2 (1,1′-dinaphthalene-2,2′-dithiol)) in the presence of NEt3 yielded the mononuclear complexes [Pt(1,4-dithiolato)(P-P)]. Related palladium(II) complexes [Pd(dithiolato)(P-P)] (P-P=Ph2P(CH2)3PPh2, Ph2P(CH2)4PPh2; dithiolato = −S(CH2)4S−, (−)-DIOS) were prepared by the same method. The structure of [Pt((−)DIOS)(PPh3)2] and [Pd(S(CH2)4S)(Ph2P(CH2)3PPh2)] complexes was determined by X-ray diffraction methods. Pt—dithiolato—SnC12 systems are active in the hydroformylation of styrene. At 100 atm and 125°C [Pt(dithiolate)(P-P)]/SnCl2 (Pt:Sn = 20) systems provided aldehyde conversion up to 80%.
Resumo:
The molecular structure of trans-[PtCl(CCPh)(PEt2Ph)2] has been determined by X-ray diffraction methods. The crystals are monoclinic, space group P21, with a= 12.359(3), b= 13.015(3), c= 9.031(2)Å, β= 101.65(2)°, and Z= 2. The structure has been solved by the heavy-atom method and refined by full-matrix least squares to R 0.046 for 1 877 diffractometric intensity data. The crystals contain discrete molecules in which the platinum coordination is square planar. The phenylethynyl group is non-linear, with a Pt–CC angle of 163(2)°. Selected bond lengths are Pt–Cl 2.407(5) and Pt–C 1.98(2)Å. The structural trans influences of CCPh, CHCH2, and CH2SiMe3 ligands in platinum(II) complexes are compared; there is only a small dependence on hybridization at the ligating carbon atom.
Resumo:
Four new nickel(II) complexes, [Ni2L2(NO2)2]·CH2Cl2·C2H5OH, 2H2O (1), [Ni2L2(DMF)2(m-NO2)]ClO4·DMF (2a), [Ni2L2(DMF)2(m-NO2)]ClO4 (2b) and [Ni3L¢2(m3-NO2)2(CH2Cl2)]n·1.5H2O (3) where HL = 2-[(3-amino-propylimino)-methyl]-phenol, H2L¢ = 2-({3-[(2-hydroxy-benzylidene)-amino]-propylimino}-methyl)-phenol and DMF = N,N-dimethylformamide, have been synthesized starting with the precursor complex [NiL2]·2H2O, nickel(II) perchlorate and sodium nitrite and characterized structurally and magnetically. The structural analyses reveal that in all the complexes, NiII ions possess a distorted octahedral geometry. Complex 1 is a dinuclear di-m2-phenoxo bridged species in which nitrite ion acts as chelating co-ligand. Complexes 2a and 2b also consist of dinuclear entities, but in these two compounds a cis-(m-nitrito-1kO:2kN) bridge is present in addition to the di-m2-phenoxo bridge. The molecular structures of 2a and 2b are equivalent; they differ only in that 2a contains an additional solvated DMF molecule. Complex 3 is formed by ligand rearrangement and is a one-dimensional polymer in which double phenoxo as well as m-nitrito-1kO:2kN bridged trinuclear units are linked through a very rare m3-nitrito-1kO:2kN:3kO¢ bridge. Analysis of variable-temperature magnetic susceptibility data indicates that there is a global weak antiferromagnetic interaction between the nickel(II) ions in four complexes, with exchange parameters J of -5.26, -11.45, -10.66 and -5.99 cm-1 for 1, 2a, 2b and 3, respectively
Resumo:
Two novel benzodioxotetraaza macrocycles [2,9-dioxo-1,4,7,10-tetraazabicyclo[10.4.0]1,11-hexadeca-1(11),13,15-triene (H(2)L1) and 2,10-dioxo-1,4,8,11-tetraazabicyclo[11.4.0]1,12-heptadeca-1(12),14,16-triene (H(2)L2)] were synthesized by a [1 + 1] crablike cyclization. The protonation constants of both ligands were determined by H-1 NMR titration and by potentiometry at 25.0 degrees C in 0.10 M ionic strength in KNO3. The latter method was also used to ascertain the stability constants of their copper(II) complexes. These studies showed that the CuL1 complex has a much lower thermodynamic stability than the CuL2, and the H(2)L2 displays an excellent affinity for copper(II), due to the good fit of copper(II) into its cavity. The copper complexes of the novel ligands were characterized by electronic spectroscopy in solution and by crystal X-ray diffraction. These studies indicated that the copper center in the CuL1 complex adopts a square-pyramidal geometry with the four nitrogen atoms of the macrocycle forming the equatorial plane and a water molecule at axial position, and the copper in the CuL2 complex is square-planar. Several labeling conditions were tested, and only H(2)L2 could be labeled with Cu-67 efficiently (> 98%) in mild conditions (39 degrees C, 15 min) to provide a slightly hydrophilic radioligand (log D = -0.19 +/- 0.03 at pH 7.4). The in vitro stability was studied in the presence of different buffers or with an excess of diethylenetriamine-pentaethanoic acid. Very high stability was shown under these conditions for over 5 days. The incubation of the radiocopper complex in human serum showed 6% protein binding.
Resumo:
Reactivities of pyridylthioazophenols (1) with zinc(II) salts have been studied and the complexes isolated in pure form and characterized. Pyridylthioazophenols react with zinc( II)acetate in MeOH/EtOH at room temperature to give a series of pyridylsulfinylazophenols (2)but no zinc( II) complex. The sulfoxides (2) have been characterized by IR and NMR. One of the pyridylsulfinylazophenols (2a) has been subjected to single-crystal X-ray analysis in order to confirm details of its structure. A series of dimeric zinc( II) complexes of tetradentate NSNO pyridylthioazophenolates has been isolated through reaction of zinc nitrate in MeOH followed by in situ reaction with azide ion, which acts as a mu-(1,1) bridge. All complexes have been characterized spectroscopically. The detailed structure of one of the dinuclear zinc( II) complexes has been established by a single-crystal X-ray structure determination. In complex 3a two octahedrally coordinated zinc( II) ions are bridged by two end-on azide ions. No reactions of pyridylthioazophenols with zinc chloride in refluxing EtOH have been observed.
Resumo:
Two new cadmium (II) complexes [Cd(hmt)(dca)(2)] (n) (1) and [Cd-3(hmt)(2)(SeCN)(6)(H2O)(2)] (n) (2) (hmt=hexamethylenetetramine, dca=dicyanamide) have been synthesized and characterized by X-ray single-crystal analysis. The complex 1 is a 2D rectangular grid of octahedral cadmium (II) with CdN6 chromophore where cadmium centers are doubly bridged by dicyanamide and hmt along a-axis, which are interlinked by dicyanamide running along c-axis. Whereas, complex 2 is a 1D chain of octahedral cadmium (II) with a three-leg ladder topology running along a-axis. The Cd(II) centers are doubly bridged through SeCN (infinite rail) along a-axis and singly bridged by hmt (two-step rung) along c-axis, having cadmium centers with CdSe2N3O and CdSe2N4 chromophores. The adjacent chains through H-bonding between coordinated water and hmt, and (SeSe)-Se-... interaction are extended to 2D supramolecular architecture.
Resumo:
Structural and magnetic characterization of compound {[Ni-2(L)(2)(OAC)(2)][Ni-3(L)(2) (OAc)(4)]) center dot 2CH(3)CN (3) (HL = the tridentate Schiff base ligand, 2-[(3-methylaminb-propylimino)-methyl]-phenol) shows that it is a rare example of a crystal incorporating a dinuclear Ni(II) compound, [Ni-2(L)(2)(OAc)(2)], and a trinuclear one, [Ni-3(L)(2)(OAC)(4)]. Even more unusual is the fact that both Ni (II) complexes, [Ni-2(L)(2)(OAc)(2)] (1) and [Ni-3(L)(2)(OAc)(4)(H2O)(2)] center dot CH2Cl2 center dot 2CH(3)OH (2), have also been isolated and structurally and magnetically characterized. The structural analysis reveals that the dimeric complexes [Ni-2(L)(2)(OAc)(2)] in cocrystal 3 and in compound 1 are almost identical-in both complexes, the Ni(II) ions possess a distorted octahedral geometry formed by the chelating tridentate ligand (L), a chelating acetate ion, and a bridging phenoxo group with very similar bond angles and distances. On the other hand, compound 2 and the trinuclear complex in the cocrystal 3 show a similar linear centrosymmetric structure with the tridentate ligand coordinated to the terminal Ni(II) and linked to the central Ni(II) by phenoxo and carboxylate bridges. The only difference is that a water molecule found in 2 is not present in the trinuclear unit of complex 3; instead, the coordination sphere is completed by an additional bridging oxygen atom from an acetate ligand. Variable-temperature (2-300 K) magnetic susceptibility measurements show that the dinuclear unit is antiferromagnetically coupled in both compounds (2J = -36.18 and -29.5 cm(-1) in 1 and 3, respectively), whereas the trinuclear unit shows a very weak ferromagnetic coupling in compound 3 (2J = 0.23 cm(-1)) and a weak antiferromagnetic coupling in 2 (2J = -8.7(2) cm(-1)) due to the minor changes in the coordination sphere.
Resumo:
Four new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (1), [(CuL2)(3)(mu(3)-OH)](CIO4)(2) (2), [(CuL3)(3)-(mu(3)-OH)](ClO4)(4)center dot H2O (3), and [(CuL4)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (4), where HL1 = 8-amino-4,7,7-trimethyl-5-azaoct-3-en-2-one, HL2 = 7-amino-4-methyl-5-azaoct-3-en-2-one, HL3 = 7(ethylamino)-4-methyl-5-azahept-3-en-2-one, and HL4 = 4-methyl-7-(methylamino)-5-azahept-3-en-2-one, have been derived from the four tridentate Schiff bases (HL1, HL2, HL3, and HL4) and structurally characterized by X-ray crystallography. For all compounds, the cationic part is trinuclear with a CU3OH core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The copper atoms are five-coordinate with a distorted square-pyramidal geometry; the equatorial plane consists of the bridging oxygen atom of the central OH group together with three atoms (N, N, O) from one ligand whereas an oxygen atom of a second ligand occupies the axial position. Magnetic measurements have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2+S2S3+S1S3) yielding as best-fit parameters: J = -66.7 and g = 2.19 for 1, J = -36.6 and g = 2.20 for 2, J = -24.5 and g = 2.20 for 3, and J = -14.9 and g = 2.05 for 4. EPR spectra at low temperature show the existence of spin frustration in complexes 3 and 4, but it has not been possible to carry out calculations of the antisymmetric exchange parameter, G, from magnetic data. In frozen methanolic solution, at 4 K, hyperfine splitting in all complexes and spin frustration in complex 4 seem to be confirmed. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)
Resumo:
The Schiff base ligand, HL (2-[1-(3-methylamino-propylimino)-ethyl]-phenol), the 1:1 condensation product of 2-hydroxy acetophenone and N-methyl-1,3-diaminopropane, has been synthesized and characterized by X-ray crystallography as the perchlorate salt [H2L]ClO4 (1). The structure consists of discrete [H2L](+) cations and perchlorate anions. Two dinuclear Ni-II complexes, [Ni2L2(NO2)(2)] (2), [Ni2L2(NO3)(2)] (3) have been synthesized using this ligand and characterized by single crystal X-ray analyses. Complexes 2 and 3 are centrosymmetric dimers in which the Ni-II ions are in distorted fac- and mer-octahedral environments, respectively, bridged by two mu(2)-phenolate ions of deprotonated ligand, L. The plane of the phenyl rings and the Ni2O2 basal plane are nearly coplanar in 2 but almost perpendicular in 3. We have studied and explained this different behavior using high level DFT calculations (RI-BP86/def2-TZVP level of theory). The conformation observed in 3, which is energetically less favorable, is stabilized via intermolecular non-covalent interactions. Under the excitation of ultraviolet light, characteristic fluorescence of compound 1 was observed; by comparison fluorescence intensity decreases in case of compound 3 and completely quenched in compound 2.