98 resultados para Magnetosphere


Relevância:

10.00% 10.00%

Publicador:

Resumo:

ESA’s first multi-satellite mission Cluster is unique in its concept of 4 satellites orbiting in controlled formations. This will give an unprecedented opportunity to study structure and dynamics of the magnetosphere. In this paper we discuss ways in which ground-based remote-sensing observations of the ionosphere can be used to support the multipoint in-situ satellite measurements. There are a very large number of potentially useful configurations between the satellites and any one ground-based observatory; however, the number of ideal occurrences for any one configuration is low. Many of the ground-based instruments cannot operate continuously and Cluster will take data only for a part of each orbit, depending on how much high-resolution (‘burst-mode’) data are acquired. In addition, there are a great many instrument modes and the formation, size and shape of the cluster of the four satellites to consider. These circumstances create a clear and pressing need for careful planning to ensure that the scientific return from Cluster is maximised by additional coordinated ground-based observations. For this reason, ESA established a working group to coordinate the observations on the ground with Cluster. We will give a number of examples how the combined spacecraft and ground-based observations can address outstanding questions in magnetospheric physics. An online computer tool has been prepared to allow for the planning of conjunctions and advantageous constellations between the Cluster spacecraft and individual or combined ground-based systems. During the mission a ground-based database containing index and summary data will help to identify interesting datasets and allow to select intervals for coordinated studies. We illustrate the philosophy of our approach, using a few important examples of the many possible configurations between the satellite and the ground-based instruments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present evidence for the acceleration of magnetospheric ions by reflection off two Alfvén waves, launched by the reconnection site into the inflow regions on both sides of the reconnecting magnetopause. The “exterior” wave stands in the inflow from the magnetosheath and is the magnetopause, in the sense that the majority of the field rotation occurs there. The other, “interior” wave stands in the inflow region on the magnetospheric side of the boundary. The population reflected by the interior wave is the more highly energized of the two and appears at low altitudes on open field lines, immediately equatorward of the cusp precipitation. In addition, we identify the population of magnetosheath ions transmitted across the exterior Alfvén wave, as well as a population of magnetospheric ions which are accelerated, after transmission through the interior wave, by reflection off the exterior wave. The ion populations near the X line are modeled and, with allowance for time-of-flight effects, are also derived from observations in the dayside auroral ionosphere. Agreement between observed and theoretical spectra is very good and the theory also explains the observed total fluxes and average energies of the precipitations poleward of the open/closed field line boundary. The results offer a physical interpretation of all the various classifications of precipitation into the dayside ionosphere (central plasma sheet, dayside boundary plasma sheet, void, low-latitude boundary layer, cusp, and mantle) and allow the conditions in both the magnetosphere and the magnetosheath adjacent to the X line to be studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The open magnetosphere model of cusp ion injection, acceleration and precipitation is used to predict the dispersion characteristics for fully pulsed magnetic reconnection at a low-latitude magnetopause X-line. The resulting steps, as would be seen by a satellite moving meridionally and normal to the ionospheric projection of the X-line, are compared with those seen by satellites moving longitudinally, along the open/closed boundary. It is shown that two observed cases can be explained by similar magnetosheath and reconnection characteristics, and that the major differences between them are well explained by the different satellite paths through the events. Both cases were observed in association with poleward-moving transient events seen by ground-based radar, as also predicted by the theory. The results show that the reconnection is pulsed but strongly imply it cannot also be spatially patchy, in the sense of isolated X-lines which independently are intermittently active. Furthermore they show that the reconnection pulses responsible for the poleward-moving events and the cusp ion steps, must cover at least 3 h of magnetic local time, although propagation of the active reconnection region may mean that it does not extend this far at any one instant of time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Earth's cusps are magnetic field features in the magnetosphere associated with regions through which plasma from the Sun can have direct access to the upper atmosphere. Recently, new ground-based observations, combined with in situ satellite measurements, have led the way in reinterpreting cusp signatures. These observations, combined with theoretical advances, have stimulated new interest in the solar wind-magnetosphere-ionosphere coupling chain. This coupling process is important because it causes both momentum and energy from the solar wind to enter into the near-Earth region. Here we describe the current ideas concerning the cusps and the supporting observational evidence which have evolved over the past 30 years. We include discussion on the plasma entry process, particle motion between the magnetopause and ionosphere, ground optical and radar measurements, and transient events. We also review the important questions that remain to be answered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies indicate that magnetopause reconnection can, at times, occur exclusively as a series of separated, short bursts. Reconnection generates “open” magnetic flux that threads the magnetospheric boundary, the magnetopause, and so connects the magnetosphere with interplanetary space. The rate at which open flux is generated by a line of unit length in the magnetopause is called the reconnection rate. By Faraday's induction law, the reconnection rate is a boundary-tangential electric field, Et, along that line (called an X-line).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A coordinated ground-based observational campaign using the IMAGE magnetometer network, EISCAT radars and optical instruments on Svalbard has made possible detailed studies of a travelling convection vortices (TCV) event on 6 January 1992. Combining the data from these facilities allows us to draw a very detailed picture of the features and dynamics of this TCV event. On the way from the noon to the drawn meridian, the vortices went through a remarkable development. The propagation velocity in the ionosphere increased from 2.5 to 7.4 km s−1, and the orientation of the major axes of the vortices rotated from being almost parallel to the magnetic meridian near noon to essentially perpendicular at dawn. By combining electric fields obtained by EISCAT and ionospheric currents deduced from magnetic field recordings, conductivities associated with the vortices could be estimated. Contrary to expectations we found higher conductivities below the downward field aligned current (FAC) filament than below the upward directed. Unexpected results also emerged from the optical observations. For most of the time there were no discrete aurora at 557.7 nm associated with the TCVs. Only once did a discrete form appear at the foot of the upward FAC. This aurora subsequently expanded eastward and westward leaving its centre at the same longitude while the TCV continued to travel westward. Also we try to identify the source regions of TCVs in the magnetosphere and discuss possible generation mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an analysis of a cusp ion step, observed by the Defense Meteorological Satellite Program (DMSP) F10 spacecraft, between two poleward moving events of enhanced ionospheric electron temperature, observed by the European Incoherent Scatter (EISCAT) radar. From the ions detected by the satellite, the variation of the reconnection rate is computed for assumed distances along the open-closed field line separatrix from the satellite to the X line, do. Comparison with the onset times of the associated ionospheric events allows this distance to be estimated, but with an uncertainty due to the determination of the low-energy cutoff of the ion velocity distribution function, ƒ(ν). Nevertheless, the reconnection site is shown to be on the dayside magnetopause, consistent with the reconnection model of the cusp during southward interplanetary magnetic field (IMF). Analysis of the time series of distribution function at constant energies, ƒ(ts), shows that the best estimate of the distance do is 14.5±2 RE. This is consistent with various magnetopause observations of the signatures of reconnection for southward IMF. The ion precipitation is used to reconstruct the field-parallel part of the Cowley D ion distribution function injected into the open low-latitude boundary layer in the vicinity of the X line. From this reconstruction, the field-aligned component of the magnetosheath flow is found to be only −55±65 km s−1 near the X line, which means either that the reconnection X line is near the stagnation region at the nose of the magnetosphere, or that it is closely aligned with the magnetosheath flow streamline which is orthogonal to the magnetosheath field, or both. In addition, the sheath Alfvén speed at the X line is found to be 220±45 km s−1, and the speed with which newly opened field lines are ejected from the X line is 165±30 km s−1. We show that the inferred magnetic field, plasma density, and temperature of the sheath near the X line are consistent with a near-subsolar reconnection site and confirm that the magnetosheath field makes a large angle (>58°) with the X line.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The four Cluster spacecraft offer a unique opportunity to study structure and dynamics in the magnetosphere and we discuss four general ways in which ground-based remote-sensing observations of the ionosphere can be used to support the in-situ measurements. The ionosphere over the Svalbard islands will be studied in particular detail, not only by the ESR and EISCAT incoherent scatter radars, but also by optical instruments, magnetometers, imaging riometers and the CUTLASS bistatic HF radar. We present an on-line procedure to plan coordinated measurements by the Cluster spacecraft with these combined ground-based systems. We illustrate the philosophy of the method, using two important examples of the many possible configurations between the Cluster satellites and the ground-based instruments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of zero-flow equilibria of the magnetosphere-ionosphere system leads to a large number of predictions concerning the ionospheric signatures of pulsed magnetopause reconnection. These include: poleward-moving F-region electron temperature enhancements and associated transient 630nm emission; associated poleward plasma flow which, compared to the pulsed variation of the reconnection rate, is highly smoothed by induction effects; oscillatory latitudinal motion of the open/closed field line boundary; phase lag of plasma flow enhancements after equatorward motions of the boundary; azimuthal plasma flow bursts, coincident in time and space with the 630nm-dominant auroral transients, only when the magnitude of the By component of the interplanetary magnetic field (IMF) is large; azimuthal-then-poleward motion of 630nm-dominant transients at a velocity which at all times equals the internal plasma flow velocity; 557.7nm-dominant transients on one edge of the 630nm-dominant transient (initially, and for large |By|, on the poleward or equatorward edge depending on the polarity of IMF By); tailward expansion of the flow response at several km s-1; and discrete steps in the cusp ion dispersion signature between the polewardmoving structures. This paper discusses these predictions and how all have recently been confirmed by combinations of observations by optical instruments on the Svalbard Islands, the EISCAT radars and the DMSP and DE satellites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present predictions of the signatures of magnetosheath particle precipitation (in the regions classified as open low-latitude boundary layer, cusp, mantle and polar cap) for periods when the interplanetary magnetic field has a southward component. These are made using the “pulsating cusp” model of the effects of time-varying magnetic reconnection at the dayside magnetopause. Predictions are made for both low-altitude satellites in the topside ionosphere and for midaltitude spacecraft in the magnetosphere. Low-altitude cusp signatures, which show a continuous ion dispersion signature, reveal "quasi-steady reconnection" (one limit of the pulsating cusp model), which persists for a period of at least 10 min. We estimate that “quasi-steady” in this context corresponds to fluctuations in the reconnection rate of a factor of 2 or less. The other limit of the pulsating cusp model explains the instantaneous jumps in the precipitating ion spectrum that have been observed at low altitudes. Such jumps are produced by isolated pulses of reconnection: that is, they are separated by intervals when the reconnection rate is zero. These also generate convecting patches on the magnetopause in which the field lines thread the boundary via a rotational discontinuity separated by more extensive regions of tangential discontinuity. Predictions of the corresponding ion precipitation signatures seen by midaltitude spacecraft are presented. We resolve the apparent contradiction between estimates of the width of the injection region from midaltitude data and the concept of continuous entry of solar wind plasma along open field lines. In addition, we reevaluate the use of pitch angle-energy dispersion to estimate the injection distance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze ionospheric convection patterns over the polar regions during the passage of an interplanetary magnetic cloud on January 14, 1988, when the interplanetary magnetic field (IMF) rotated slowly in direction and had a large amplitude. Using the assimilative mapping of ionospheric electrodynamics (AMIE) procedure, we combine simultaneous observations of ionospheric drifts and magnetic perturbations from many different instruments into consistent patterns of high-latitude electrodynamics, focusing on the period of northward IMF. By combining satellite data with ground-based observations, we have generated one of the most comprehensive data sets yet assembled and used it to produce convection maps for both hemispheres. We present evidence that a lobe convection cell was embedded within normal merging convection during a period when the IMF By and Bz components were large and positive. As the IMF became predominantly northward, a strong reversed convection pattern (afternoon-to-morning potential drop of around 100 kV) appeared in the southern (summer) polar cap, while convection in the northern (winter) hemisphere became weak and disordered with a dawn-to-dusk potential drop of the order of 30 kV. These patterns persisted for about 3 hours, until the IMF rotated significantly toward the west. We interpret this behavior in terms of a recently proposed merging model for northward IMF under solstice conditions, for which lobe field lines from the hemisphere tilted toward the Sun (summer hemisphere) drape over the dayside magnetosphere, producing reverse convection in the summer hemisphere and impeding direct contact between the solar wind and field lines connected to the winter polar cap. The positive IMF Bx component present at this time could have contributed to the observed hemispheric asymmetry. Reverse convection in the summer hemisphere broke down rapidly after the ratio |By/Bz| exceeded unity, while convection in the winter hemisphere strengthened. A dominant dawn-to-dusk potential drop was established in both hemispheres when the magnitude of By exceeded that of Bz, with potential drops of the order of 100 kV, even while Bz remained northward. The later transition to southward Bz produced a gradual intensification of the convection, but a greater qualitative change occurred at the transition through |By/Bz| = 1 than at the transition through Bz = 0. The various convection patterns we derive under northward IMF conditions illustrate all possibilities previously discussed in the literature: nearly single-cell and multicell, distorted and symmetric, ordered and unordered, and sunward and antisunward.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The altitude from which transient 630-nm (“red line”) light is emitted in transient dayside auroral breakup events is discussed. Theoretically, the emissions should normally originate from approximately 250 to 550 km. Because the luminosity in dayside breakup events moves in a way that is consistent with newly opened field lines, they have been interpreted as the ionospheric signatures of transient reconnection at the dayside magnetopause. For this model the importance of these events for convection can be assessed from the rate of change of their area. The area derived from analysis of images from an all-sky camera and meridian scans from a photometer, however, depends on the square of the assumed emission altitude. From field line mapping, it is shown for both a westward and an eastward moving event, that the main 557.7-nm emission comes from the edge of the 630 nm transient, where a flux transfer event model would place the upward field-aligned current (on the poleward and equatorward edge, respectively). The observing geometry for the two cases presented is such that this is true, irrespective of the 630-nm emission altitude. From comparisons with the European incoherent scatter radar data for the westward (interplanetary magnetic field By > 0) event on January 12, 1988, the 630-nm emission appears to emanate from an altitude of 250 km, and to be accompanied by some 557.7-nm “green-line” emission. However, for a large, eastward moving event observed on January 9, 1989, there is evidence that the emission altitude is considerably greater and, in this case, the only 557.7-nm emission is that on the equatorward edge of the event, consistent with a higher altitude 630-nm excitation source. Assuming an emission altitude of 250 km for this event yields a reconnection voltage of >50 kV during the reconnection burst but a contribution to the convection voltage of >15 kV. However, from the motion of the event we infer that the luminosity peaks at an altitude in the range of 400 and 500 km, and for the top of this range the reconnection and average convection voltages would be increased to >200 kV and >60 kV, respectively. (These are all minimum estimates because the event extends in longitude beyond the field-of-view of the camera). Hence the higher-emission altitude has a highly significant implication, namely that the reconnection bursts which cause the dayside breakup events could explain most of the voltage placed across the magnetosphere and polar cap by the solar wind flow. Analysis of the plasma density and temperatures during the event on January 9, 1989, predicts the required thermal excitation of significant 630-nm intensities at altitudes of 400-500 km.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proposed HI-LITE Explorer will investigate the global ion outflow from the high-latitude ionosphere, its relationship to auroral features, and the consequences of this outflow on magnetospheric processes. The unique nature of the HI-LITE Explorer images will allow temporal and spatial features of the global ion outflow to be determined. The mission's scientific motivation comes from the fundamental role high-latitude ionospheric ions play in the dynamics of the solar wind driven magnetospheric-ionospheric system. These outflows are a major source of plasma for the magnetosphere and it is believed they play an important role in the triggering of substorms. In addition this paper describes the HI-LITE spacecraft and instruments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recurrence rate of flux transfer events (FTEs) observed near the dayside magnetopause is discussed. A survey of magnetopause observations by the ISEE satellites shows that the distribution of the intervals between FTE signatures has a mode value of 3 min, but is highly skewed, having upper and lower decile values of 1.5 min and 18.5 min, respectively. The mean value is found to be 8 min, consistent with previous surveys of magnetopause data. The recurrence of quasi-periodic events in the dayside auroral ionosphere is frequently used as evidence for an association with magnetopause FTEs, and the distribution of their repetition intervals should be matched to that presented here if such an association is to be confirmed. A survey of 1 year's 15-s data on the interplanetary magnetic field (IMF) suggests that the derived distribution could arise from fluctuations in the IMF Bz component, rather than from a natural oscillation frequency of the magnetosphere-ionosphere system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low- and high-latitude boundary layers of the earth's magnetosphere [low-latitude boundary layer (LLBL) and mantle] play important roles in transferring momentum and energy from the solar wind to the magnetosphere-ionosphere system. Particle precipitation, field-aligned current, auroral emission, ionospheric ion drift and ground magnetic perturbations are among the low-altitude parameters that show signatures of various plasma processes in the LLBL and the magnetopause current layer. Magnetic merging events, Kelvin-Helmholtz waves, and pressure pulses excited by the variable solar wind/magnetosheath plasma are examples of boundary phenomena that may be coupled to the ionosphere via field-aligned currents. Optical auroral observation, by photometry and all-sky TV cameras, is a unique technique for investigating the spatial and temporal structure of the electron precipitation associated with such phenomena. However, the distinction between the different boundary layer plasma populations cannot in general be unambiguously determined by optics alone. Additional information, such as satellite observations of particle boundaries and field-aligned currents, is needed in order to identify the plasma source(s) and the magnetosphere-ionosphere coupling mode(s). Two categories of auroral activity/structure in the vicinity of the polar cusp are discussed in this paper, based on combined ground and satellite data. In one case, the quasi-periodic sequence of auroral events at the polar cap boundary involves accelerated electrons (< 1 keV) moving poleward (< 1 km s-1) and azimuthally along the persistent cusp/cleft arc poleward boundary with velocities (< 4 km s-1), comparable to the local ionospheric ion drift during periods of southward IMF. A critical question is whether or not the optical events signify a corresponding plasma flow across the open/closed field line boundary in such cases. Near-simultaneous observations of magnetopause flux transfer events (FTEs) and such optical/ion drift events are reported. The reverse pattern of motion of discrete auroral forms is observed during positive interplanetary magnetic field (IMF) B(Z), i.e. equatorward motion into the cusp/cleft background arc from the poleward edge. Combined satellite and ground-based information for the latter cases indicate a source mechanism, poleward of the cusp at the high-latitude magnetopause or plasma mantle, giving rise to strong momentum transfer and electron precipitation structures within a approximately 200 km-wide latitudinal zone at the cusp/cleft poleward boundary. The striking similarities of auroral electrodynamics in the cleft/mantle region during northward and southward IMF indicate that a qualitatively similar solar wind-magnetosphere coupling mode is operating. It is suggested that, in both cases, the discrete auroral forms represent temporal/spatial structure of larger-scale convection over the polar magnetosphere.