96 resultados para Magnetic field effects


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interchange reconnection at the Sun, that is, reconnection between a doubly-connected field loop and singly-connected or open field line that extends to infinity, has important implications for the heliospheric magnetic flux budget. Recent work on the topic is reviewed, with emphasis on two aspects. The first is a possible heliospheric signature of interchange reconnection at the coronal hole boundary, where open fields meet closed loops. The second aspect concerns the means by which the heliospheric magnetic field strength reached record-lows during the recent solar minimum period. A new implication of this work is that interchange reconnection may be responsible for the puzzling, occasional coincidence of the heliospheric current sheet and the interface between fast and slow flow in the solar wind.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper explores a novel tactile human-machine interface based on the controlled stimulation of mechanoreceptors by a subdermal magnetic implant manipulated through an external electromagnet. The selection of a suitable implant magnet and implant site is discussed and an external interface for manipulating the implant is described. The paper also reports on the basic properties of such an interface, including magnetic field strength sensitivity and frequency sensitivity obtained through experimentation on two participants. Finally, the paper presents two practical application scenarios for the interface.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) which exhibit signatures consistent with a magnetic flux rope structure. Techniques for reconstructing flux rope orientation from single-point in situ observations typically assume the flux rope is locally cylindrical, e.g., minimum variance analysis (MVA) and force-free flux rope (FFFR) fitting. In this study, we outline a non-cylindrical magnetic flux rope model, in which the flux rope radius and axial curvature can both vary along the length of the axis. This model is not necessarily intended to represent the global structure of MCs, but it can be used to quantify the error in MC reconstruction resulting from the cylindrical approximation. When the local flux rope axis is approximately perpendicular to the heliocentric radial direction, which is also the effective spacecraft trajectory through a magnetic cloud, the error in using cylindrical reconstruction methods is relatively small (≈ 10∘). However, as the local axis orientation becomes increasingly aligned with the radial direction, the spacecraft trajectory may pass close to the axis at two separate locations. This results in a magnetic field time series which deviates significantly from encounters with a force-free flux rope, and consequently the error in the axis orientation derived from cylindrical reconstructions can be as much as 90∘. Such two-axis encounters can result in an apparent ‘double flux rope’ signature in the magnetic field time series, sometimes observed in spacecraft data. Analysing each axis encounter independently produces reasonably accurate axis orientations with MVA, but larger errors with FFFR fitting.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we explore classification techniques for ill-posed problems. Two classes are linearly separable in some Hilbert space X if they can be separated by a hyperplane. We investigate stable separability, i.e. the case where we have a positive distance between two separating hyperplanes. When the data in the space Y is generated by a compact operator A applied to the system states ∈ X, we will show that in general we do not obtain stable separability in Y even if the problem in X is stably separable. In particular, we show this for the case where a nonlinear classification is generated from a non-convergent family of linear classes in X. We apply our results to the problem of quality control of fuel cells where we classify fuel cells according to their efficiency. We can potentially classify a fuel cell using either some external measured magnetic field or some internal current. However we cannot measure the current directly since we cannot access the fuel cell in operation. The first possibility is to apply discrimination techniques directly to the measured magnetic fields. The second approach first reconstructs currents and then carries out the classification on the current distributions. We show that both approaches need regularization and that the regularized classifications are not equivalent in general. Finally, we investigate a widely used linear classification algorithm Fisher's linear discriminant with respect to its ill-posedness when applied to data generated via a compact integral operator. We show that the method cannot stay stable when the number of measurement points becomes large.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Historic geomagnetic activity observations have been used to reveal centennial variations in the open solar flux and the near-Earth heliospheric conditions (the interplanetary magnetic field and the solar wind speed). The various methods are in very good agreement for the past 135 years when there were sufficient reliable magnetic observatories in operation to eliminate problems due to site-specific errors and calibration drifts. This review underlines the physical principles that allow these reconstructions to be made, as well as the details of the various algorithms employed and the results obtained. Discussion is included of: the importance of the averaging timescale; the key differences between “range” and “interdiurnal variability” geomagnetic data; the need to distinguish source field sector structure from heliospherically-imposed field structure; the importance of ensuring that regressions used are statistically robust; and uncertainty analysis. The reconstructions are exceedingly useful as they provide calibration between the in-situ spacecraft measurements from the past five decades and the millennial records of heliospheric behaviour deduced from measured abundances of cosmogenic radionuclides found in terrestrial reservoirs. Continuity of open solar flux, using sunspot number to quantify the emergence rate, is the basis of a number of models that have been very successful in reproducing the variation derived from geomagnetic activity. These models allow us to extend the reconstructions back to before the development of the magnetometer and to cover the Maunder minimum. Allied to the radionuclide data, the models are revealing much about how the Sun and heliosphere behaved outside of grand solar maxima and are providing a means of predicting how solar activity is likely to evolve now that the recent grand maximum (that had prevailed throughout the space age) has come to an end.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We show that the observed K velocities and periodicities of AM CVn can be reconciled given a mass ratio q~0.22 and a secondary star with a modest magnetic field of surface strength B~1 T. We see that the new mass ratio implies that the secondary is most likely semidegenerate. The effect of the field on the accretion disc structure is examined. The theory of precessing discs and resonant orbits is generalized to encompass higher order resonances than 3:2 and shown to retain consistency with the new mass ratio.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a new composite of geomagnetic activity which is designed to be as homogeneous in its construction as possible. This is done by only combining data that, by virtue of the locations of the source observatories used, have similar responses to solar wind and IMF (interplanetary magnetic field) variations. This will enable us (in Part 2, Lockwood et al., 2013a) to use the new index to reconstruct the interplanetary magnetic field, B, back to 1846 with a full analysis of errors. Allowance is made for the effects of secular change in the geomagnetic field. The composite uses interdiurnal variation data from Helsinki for 1845–1890 (inclusive) and 1893–1896 and from Eskdalemuir from 1911 to the present. The gaps are filled using data from the Potsdam (1891–1892 and 1897–1907) and the nearby Seddin observatories (1908–1910) and intercalibration achieved using the Potsdam–Seddin sequence. The new index is termed IDV(1d) because it employs many of the principles of the IDV index derived by Svalgaard and Cliver (2010), inspired by the u index of Bartels (1932); however, we revert to using one-day (1d) means, as employed by Bartels, because the use of near-midnight values in IDV introduces contamination by the substorm current wedge auroral electrojet, giving noise and a dependence on solar wind speed that varies with latitude. The composite is compared with independent, early data from European-sector stations, Greenwich, St Petersburg, Parc St Maur, and Ekaterinburg, as well as the composite u index, compiled from 2–6 stations by Bartels, and the IDV index of Svalgaard and Cliver. Agreement is found to be extremely good in all cases, except two. Firstly, the Greenwich data are shown to have gradually degraded in quality until new instrumentation was installed in 1915. Secondly, we infer that the Bartels u index is increasingly unreliable before about 1886 and overestimates the solar cycle amplitude between 1872 and 1883 and this is amplified in the proxy data used before 1872. This is therefore also true of the IDV index which makes direct use of the u index values.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the concluding paper of this tetralogy, we here use the different geomagnetic activity indices to reconstruct the near-Earth interplanetary magnetic field (IMF) and solar wind flow speed, as well as the open solar flux (OSF) from 1845 to the present day. The differences in how the various indices vary with near-Earth interplanetary parameters, which are here exploited to separate the effects of the IMF and solar wind speed, are shown to be statistically significant at the 93% level or above. Reconstructions are made using four combinations of different indices, compiled using different data and different algorithms, and the results are almost identical for all parameters. The correction to the aa index required is discussed by comparison with the Ap index from a more extensive network of mid-latitude stations. Data from the Helsinki magnetometer station is used to extend the aa index back to 1845 and the results confirmed by comparison with the nearby St Petersburg observatory. The optimum variations, using all available long-term geomagnetic indices, of the near-Earth IMF and solar wind speed, and of the open solar flux, are presented; all with ±2sigma� uncertainties computed using the Monte Carlo technique outlined in the earlier papers. The open solar flux variation derived is shown to be very similar indeed to that obtained using the method of Lockwood et al. (1999).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Galactic cosmic rays (GCRs) are modulated by the heliospheric magnetic field (HMF) both over decadal time scales (due to long-term, global HMF variations), and over time scales of a few hours (associated with solar wind structures such as coronal mass ejections or the heliospheric current sheet, HCS). Due to the close association between the HCS, the streamer belt, and the band of slow solar wind, HCS crossings are often associated with corotating interaction regions where fast solar wind catches up and compresses slow solar wind ahead of it. However, not all HCS crossings are associated with strong compressions. In this study we categorize HCS crossings in two ways: Firstly, using the change in magnetic polarity, as either away-to-toward (AT) or toward-to-away (TA) magnetic field directions relative to the Sun and, secondly, using the strength of the associated solar wind compression, determined from the observed plasma density enhancement. For each category, we use superposed epoch analyses to show differences in both solar wind parameters and GCR flux inferred from neutron monitors. For strong-compression HCS crossings, we observe a peak in neutron counts preceding the HCS crossing, followed by a large drop after the crossing, attributable to the so-called ‘snow-plough’ effect. For weak-compression HCS crossings, where magnetic field polarity effects are more readily observable, we instead observe that the neutron counts have a tendency to peak in the away magnetic field sector. By splitting the data by the dominant polarity at each solar polar region, we find that the increase in GCR flux prior to the HCS crossing is primarily from strong compressions in cycles with negative north polar fields due to GCR drift effects. Finally, we report on unexpected differences in GCR behavior between TA weak compressions during opposing polarity cycles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The work involves investigation of a type of wireless power system wherein its analysis will yield the construction of a prototype modeled as a singular technological artifact. It is through exploration of the artifact that forms the intellectual basis for not only its prototypical forms, but suggestive of variant forms not yet discovered. Through the process it is greatly clarified the role of the artifact, its most suitable application given the constraints on the delivery problem, and optimization strategies to improve it. In order to improve maturity and contribute to a body of knowledge, this document proposes research utilizing mid-field region, efficient inductive-transfer for the purposes of removing wired connections and electrical contacts. While the description seems enough to state the purpose of this work, it does not convey the compromises of having to redraw the lines of demarcation between near and far-field in the traditional method of broadcasting. Two striking scenarios are addressed in this thesis: Firstly, the mathematical explanation of wireless power is due to J.C. Maxwell's original equations, secondly, the behavior of wireless power in the circuit is due to Joseph Larmor's fundamental works on the dynamics of the field concept. A model of propagation will be presented which matches observations in experiments. A modified model of the dipole will be presented to address the phenomena observed in the theory and experiments. Two distinct sets of experiments will test the concept of single and two coupled-modes. In a more esoteric context of the zero and first-order magnetic field, the suggestion of a third coupled-mode is presented. Through the remaking of wireless power in this context, it is the intention of the author to show the reader that those things lost to history, bound to a path of complete obscurity, are once again innovative and useful ideas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fair weather atmospheric electrical current (Jz) couples the ionosphere to the lower atmosphere and thus provides a route by which changes in solar activity can modify processes in the lower troposphere. This paper examines the temporal variations and spectral characteristics of continuous measurements of Jz conducted at the Wise Observatory in Mitzpe-Ramon, Israel (30°35′ N, 34°45′ E), during two large CMEs, and during periods of increased solar wind density. Evidence is presented for the effects of geomagnetic storms and sub-storms on low latitude Jz during two coronal mass ejections (CMEs), on 24–25th October 2011 and 7–8th March 2012, when the variability in Jz increased by an order of magnitude compared to normal fair weather conditions. The dynamic spectrum of the increased Jz fluctuations exhibit peaks in the Pc5 frequency range. Similar low frequency characteristics occur during periods of enhanced solar wind proton density. During the October 2011 event, the periods of increased fluctuations in Jz lasted for 7 h and coincided with fluctuations of the inter-planetary magnetic field (IMF) detected by the ACE satellite. We suggest downward mapping of ionospheric electric fields as a possible mechanism for the increased fluctuations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A computer simulation method has been used to study the three-dimensional structural formation and transition of eleetromagnetorheological (EMR) suspensions under compatible electric and magnetic fields. When the fields are applied simultaneously and perpendicularly to each other, the particles rapidly arrange into single layer structures parallel to both fields. In each layer, there is a two-dimensional hexagonal lattice. The single layers then combine together to form thicker sheetlike structures. With the help of the thermal fluctuations, the thicker structures relax into three-dimensional close-packed structures, which may be face-centered cubic (fcc), hexagonal close-packed (hup) lattices, or, more probably, the mixture of them, depending on the initial configurations and the thermal fluctuations. On the other hand, if the electric field is applied first to induce the body-centered tetragonal (bct) columns in the system, and then the magnetic field is applied in the perpendicular direction, the bet to fee structure transition is observed in a very short time. Following that, the structure keeps on evolving due to the demagnetization effect and finally forms close-packed structures with fee and hcp lattice character. The simulation results are in agreement with the theoretical and experimental results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We use combinations of geomagnetic indices, based on both variation range and hourly means, to derive the solar wind flow speed, the interplanetary magnetic field strength at 1 AU and the total open solar flux between 1895 and the present. We analyze the effects of the regression procedure and geomagnetic indices used by adopting four analysis methods. These give a mean interplanetary magnetic field strength increase of 45.1 ± 4.5% between 1903 and 1956, associated with a 14.4 ± 0.7% rise in the solar wind speed. We use averaging timescales of 1 and 2 days to allow for the difference between the magnetic fluxes threading the coronal source surface and the heliocentric sphere at 1 AU. The largest uncertainties originate from the choice of regression procedure: the average of all eight estimates of the rise in open solar flux is 73.0 ± 5.0%, but the best procedure, giving the narrowest and most symmetric distribution of fit residuals, yields 87.3 ± 3.9%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Ulysses spacecraft has shown that the radial component of the heliospheric magnetic field is approximately independent of latitude. This has allowed quantification of the total open solar flux from near-Earth observations of the interplanetary magnetic field. The open flux can also be estimated from photospheric magnetograms by mapping the fields up to the ‘‘coronal source surface’’ where the field is assumed to be radial and which is usually assumed to be at a heliocentric distance r = 2.5R_{S} (a mean solar radius, 1R_{S} = 6.96x10^{8} m). These two classes of open flux estimate will differ by the open flux that threads the heliospheric current sheet(s) inside Earth’s orbit at 2.5R_{S} < r < 1R{1} (where the mean Earth-Sun distance, 1R_{1} = 1 AU = 1.5 x 10^{11} m). We here use near-Earth measurements to estimate this flux and show that at sunspot minimum it causes only a very small (approximately 0.5%) systematic difference between the two types of open flux estimate, with an uncertainty that is of order ±24% in hourly values, ±16% in monthly averages, and between -6% and +2% in annual values. These fractions may be somewhat larger for sunspot maximum because of flux emerging at higher heliographic latitudes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

On 14 January 2001, the four Cluster spacecraft passed through the northern magnetospheric mantle in close conjunction to the EISCAT Svalbard Radar (ESR) and approached the post-noon dayside magnetopause over Greenland between 13:00 and 14:00 UT During that interval, a sudden reorganisation of the high-latitude dayside convection pattern accurred after 13:20 UT most likely caused by a direction change of the Solar wind magnetic field. The result was an eastward and poleward directed flow-channel, as monitored by the SuperDARN radar network and also by arrays of ground-based magnetometers in Canada, Greenland and Scandinavia. After an initial eastward and later poleward expansion of the flow-channel between 13:20 and 13:40 UT, the four Cluster spacecraft, and the field line footprints covered by the eastward looking scan cycle of the Sondre Stromfjord incoherent scatter radar were engulfed by cusp-like precipitation with transient magnetic and electric field signatures. In addition, the EISCAT Svalbard Radar detected strong transient effects of the convection reorganisation, a poleward moving precipitation, and a fast ion flow-channel in association with the auroral structures that suddenly formed to the west and north of the radar. From a detailed analysis of the coordinated Cluster and ground-based data, it was found that this extraordinary transient convection pattern, indeed, had moved the cusp precipitation from its former pre-noon position into the late post-noon sector, allowing for the first and quite unexpected encounter of the cusp by the Cluster spacecraft. Our findings illustrate the large amplitude of cusp dynamics even in response to moderate solar wind forcing. The global ground-based data proves to be an invaluable tool to monitor the dynamics and width of the affected magnetospheric regions.