76 resultados para Limitation period
Resumo:
Where are the terps in Yorkshire, or for that matter where is any other evidence of exploitation of the wetlands in the early medieval period? Archaeological evidence remains largely elusive for the period between the early fifth and the late ninth century. Among the very few sites in wetland landscapes dated to this period are the settlement of York and the middle Anglo-Saxon bridge at Skerne in the Hull valley. Sites from the free-draining soils adjacent to wetlands are more frequent, and include a monastery (Beverley), settlements (e.g. Nafferton and North Frodingham), cemeteries (e.g. Hornsea, Burton Pidsea, Hessle, North Frodingham, Swine and Stamford Bridge) and various isolated finds (recently summarised in Van de Noort and Davies 1993).
Resumo:
An understanding of how the heliosphere modulates galactic cosmic ray (GCR) fluxes and spectra is important, not only for studies of their origin, acceleration and propagation in our galaxy, but also for predicting their effects (on technology and on the Earth’s environment and organisms) and for interpreting abundances of cosmogenic isotopes in meteorites and terrestrial reservoirs. In contrast to the early interplanetary measurements, there is growing evidence for a dominant role in GCR shielding of the total open magnetic flux, which emerges from the solar atmosphere and enters the heliosphere. In this paper, we relate a strong 1.68- year oscillation in GCR fluxes to a corresponding oscillation in the open solar magnetic flux and infer cosmic-ray propagation paths confirming the predictions of theories in which drift is important in modulating the cosmic ray flux.
Resumo:
Ground magnetic field perturbations recorded by the CANOPUS magnetometer network in the 7 to 13 MLT sector are used to examine how reconfigurations of the dayside polar ionospheric flow take place in response to north-south changes of the IMF. During the 6-hour interval in question IMF Bz oscillates between ±7 nT with about a 1-hour period. Corresponding variations in the ground magnetic disturbance are observed which we infer are due to changes in ionospheric flow. Cross correlation of the data obtained from two ground stations at 73.5° magnetic latitude, but separated by ∼2 hours in MLT, shows that changes in the flow are initiated in the prenoon sector (∼10 MLT) and then spread outward toward dawn and dusk with a phase speed of ∼5 km s−1 over the longitude range ∼8 to 12 MLT, slowing to ∼2 km s−1 outside this range. Cross correlating the data from these ground stations with IMP 8 IMF Bz records produces a MLT variation in the ground response delay relative to the IMF which is compatible with these deduced phase speeds. We interpret these observations in terms of the ionospheric response to the onset, expansion and decay of magnetic reconnection at the dayside magnetopause.
Resumo:
The effect of a prolonged period of strongly northward Interplanetary Magnetic Field (IMF) on the high-latitude F-region is studied using data from the EISCAT Common Programme Zero mode of operation on 11–12 August 1982. The analysis of the raw autocorrelation functions is kept to the directly derived parameters Ne, Te, Ti and velocity, and limits are defined for the errors introduced by assumptions about ion composition and by changes in the transmitted power and system constant. Simple data-cleaning criteria are employed to eliminate problems due to coherent signals and large background noise levels. The observed variations in plasma densities, temperatures and velocities are interpreted in terms of supporting data from ISEE-3 and local riometers and magnetometers. Both field-aligned and field-perpendicular plasma flows at Tromsø showed effects of the northward IMF: convection was slow and irregular and field-aligned flow profiles were characteristic of steady-state polar wind outflow with flux of order 1012 m−2 s−1. This period followed a strongly southward IMF which had triggered a substorm. The substorm gave enhanced convection, with a swing to equatorward flow and large (5 × 1012 m−2 s−1), steady-state field-aligned fluxes, leading to the possibility of O+ escape into the magnetosphere. The apparent influence of the IMF over both field-perpendicular and field-aligned flows is explained in terms of the cross-cap potential difference and the location of the auroral oval.
Resumo:
Linear theory, model ion-density profiles and MSIS neutral thermospheric predictions are used to investigate the stability of the auroral, topside ionosphere to oxygen cyclotron waves: variations of the critical height, above which the plasma is unstable, with field-aligned current, thermal ion density and exospheric temperature are considered. In addition, probabilities are assessed that interactions with neutral atomic gases prevent O+ ions from escaping into the magnetosphere after they have been transversely accelerated by these waves. The two studies are combined to give a rough estimate of the total O+ escape flux as a function of the field-aligned current density for an assumed rise in the perpendicular ion temperature. Charge exchange with neutral oxygen, not hydrogen, is shown to be the principle limitation to the escape of O+ ions, which occurs when the waves are driven unstable down to low altitudes. It is found that the largest observed field-aligned current densities can heat a maximum of about 5×1014 O+ ions m−2 to a threshold above which they are subsequently able to escape into the magnetosphere in the following 500s. Averaged over this period, this would constitute a flux of 1012 m−2 s−1 and in steady-state the peak outflow would then be limited to about 1013 m−2 s−1 by frictional drag on thermal O+ at lower altitudes. Maximum escape is at low plasma density unless the O+ scale height is very large. The outflow decreases with decreasing field-aligned current density and, to a lesser extent, with increasing exospheric temperature. Upward flowing ion events are evaluated as a source of O+ ions for the magnetosphere and as an explanation of the observed solar cycle variation of ring current O+ abundance.
Resumo:
This study investigates the effects of a short-term pedagogic intervention on the development of L2 fluency among learners studying English for Academic purposes (EAP) at a university in the UK. It also examines the interaction between the development of fluency, and complexity and accuracy. Through a pre-test, post-test design, data were collected over a period of four weeks from learners performing monologic tasks. While the Control Group (CG) focused on developing general speaking and listening skills, the Experimental Group (EG) received awareness-raising activities and fluency strategy training in addition to general speaking and listening practice i.e following the syllabus. The data, coded in terms of a range of measures of fluency, accuracy and complexity, were subjected to repeated measures MANOVA, t-tests and correlations. The results indicate that after the intervention, while some fluency gains were achieved by the CG, the EG produced statistically more fluent language demonstrating a faster speech and articulation rate, longer runs and higher phonation time ratios. The significant correlations obtained between measures of accuracy and learners’ pauses in the CG suggest that pausing opportunities may have been linked to accuracy. The findings of the study have significant implications for L2 pedagogy, highlighting the effective impact of instruction on the development of fluency.
Resumo:
Cerrãdo savannas have the greatest fire activity of all major global land-cover types and play a significant role in the global carbon cycle. During the 21st century, temperatures are projected to increase by ∼ 3 ◦C coupled with a precipitation decrease of ∼ 20 %. Although these conditions could potentially intensify drought stress, it is unknown how that might alter vegetation composition and fire regimes. To assess how Neotropical savannas responded to past climate changes, a 14 500-year, high-resolution, sedimentary record from Huanchaca Mesetta, a palm swamp located in the cerrãdo savanna in northeastern Bolivia, was analyzed with phytoliths, stable isotopes, and charcoal. A nonanalogue, cold-adapted vegetation community dominated the Lateglacial–early Holocene period (14 500–9000 cal yr BP, which included trees and C3 Pooideae and C4 Panicoideae grasses. The Lateglacial vegetation was fire-sensitive and fire activity during this period was low, likely responding to fuel availability and limitation. Although similar vegetation characterized the early Holocene, the warming conditions associated with the onset of the Holocene led to an initial increase in fire activity. Huanchaca Mesetta became increasingly firedependent during the middle Holocene with the expansion of C4 fire-adapted grasses. However, as warm, dry conditions, characterized by increased length and severity of the dry season, continued, fuel availability decreased. The establishment of the modern palm swamp vegetation occurred at 5000 cal yr BP. Edaphic factors are the first-order control on vegetation on the rocky quartzite mesetta. Where soils are sufficiently thick, climate is the second-order control of vegetation on the mesetta. The presence of the modern palm swamp is attributed to two factors: (1) increased precipitation that increased water table levels and (2) decreased frequency and duration of surazos (cold wind incursions from Patagonia) leading to increased temperature minima. Natural (soil, climate, fire) drivers rather than anthropogenic drivers control the vegetation and fire activity at Huanchaca Mesetta. Thus the cerrãdo savanna ecosystem of the Huanchaca Plateau has exhibited ecosystem resilience to major climatic changes in both temperature and precipitation since the Lateglacial period.
Resumo:
Aims: This experiment aimed to determine whether the soil application of organic fertilizers can help the establishment of cacao and whether shade alters its response to fertilizers. Study Design: The 1.6 ha experiment was conducted over a period of one crop year (between April 2007 and March 2008) at the Cocoa Research Institute of Ghana. It involved four cacao genotypes (T 79/501, PA 150, P 30 [POS] and SCA 6), three shade levels (‘light’, ‘medium’ and ‘heavy’) and two fertilizer treatments (‘no fertilizer’, and ‘140 kg/ha of cacao pod husk ash (CPHA) plus poultry manure at 1,800 kg/ha). The experiment was designed as a split-plot with the cacao genotypes as the main plot factor and shade x fertilizer combinations as the sub-plots. Methodology: Gliricidia sepium and plantains (Musa sapientum) were planted in different arrangements to create the three temporary shade regimes for the cacao. Data were collected on temperature and relative humidity of the shade environments, initial soil nutrients, soil moisture, leaf N, P and K+ contents, survival, photo synthesis and growth of test plants. Results: The genotypes P 30 [POS] and SCA 6 showed lower stomatal conductance under non-limiting conditions. In the rainy seasons, plants under light shade had the highest CO2 assimilation rates. However, in the dry season, plants under increased shade recorded greater photosynthetic rates (P = .03). A significant shade x fertilizer interaction (P = .001) on photosynthesis in the dry season showed that heavier shade increases the benefits that young cacao gets from fertilizer application in that season. Conversely, shade should be reduced during the wet seasons to minimize light limitation to assimilation. Conclusion: Under ideal weather conditions young cacao exhibits genetic variability on stomatal conductance. Also, to optimize plant response to fertilizer application shade must be adjusted taking the prevailing weather condition into account.
Resumo:
Myrmecophyte plants house ants in domatia in exchange for protection from herbivores. Ant-myrmecophyte mutualisms exhibit two general patterns due to competition between ants for plant occupancy: i) domatia nest-sites are a limiting resource and ii) each individual plant hosts one ant species at a time. However, individual camelthorn trees (Vachellia erioloba) typically host two to four ant species simultaneously, often coexisting in adjacent domatia on the same branch. Such fine-grain spatial coexistence brings into question the conventional wisdom on ant-myrmecophyte mutualisms. Camelthorn ants appear not to be nest-site limited, despite low abundance of suitable domatia, and have random distributions of nest-sites within and across trees. These patterns suggest a lack of competition between ants for domatia and contrast strongly with other ant-myrmecophyte systems. Comparison of this unusual case with others suggests that spatial scale is crucial to coexistence or competitive exclusion involving multiple ant species. Furthermore, coexistence may be facilitated when co-occurring ant species diverge strongly on at least one niche axis. Our conclusions provide recommendations for future ant-myrmecophyte research, particularly in utilising multispecies systems to further our understanding of mutualism biology.