105 resultados para Light cheese
Resumo:
Dielectric properties of 16 process cheeses were determined over the frequency range 0.3-3 GHz. The effect of temperature on the dielectric properties of process cheeses were investigated at temperature intervals of 10 degrees C between 5 and 85 degrees C. Results showed that the dielectric constant decreased gradually as frequency increased, for all cheeses. The dielectric loss factor (epsilon") decreased from above 125 to below 12 as frequency increased. epsilon' was highest at 5 degrees C and generally decreased up to a temperature between 55 and 75 degrees C. epsilon" generally increased with increasing temperature for high and medium moisture/fat ratio cheeses. epsilon" decreased with temperature between 5 and 55 degrees C and then increased, for low moisture/fat ratio cheese. Partial least square regression models indicated that epsilon' and epsilon" could be used as a quality control screening application to measure moisture content and inorganic salt content of process cheese, respectively. (c) 2005 Elsevier Ltd. All rights reserved..
Resumo:
The meltabilities of 14 process cheese samples were determined at 2 and 4 weeks after manufacture using sensory analysis, a computer vision method, and the Olson and Price test. Sensory analysis meltability correlated with both computer vision meltability (R-2 = 0.71, P < 0.001) and Olson and Price meltability (R-2 = 0.69, P < 0.001). There was a marked lack of correlation between the computer vision method and the Olson and Price test. This study showed that the Olson and Price test gave greater repeatability than the computer vision method. Results showed process cheese meltability decreased with increasing inorganic salt content and with lower moisture/fat ratios. There was very little evidence in this study to show that process cheese meltability changed between 2 and 4 weeks after manufacture..
Resumo:
Response surface methodology was used to study the effect of temperature, cutting time, and calcium chloride addition level on curd moisture content, whey fat losses, and curd yield. Coagulation and syneresis were continuously monitored using 2 optical sensors detecting light backscatter. The effect of the factors on the sensors’ response was also examined. Retention of fat during cheese making was found to be a function of cutting time and temperature, whereas curd yield was found to be a function of those 2 factors and the level of calcium chloride addition. The main effect of temperature on curd moisture was to increase the rate at which whey was expelled. Temperature and calcium chloride addition level were also found to affect the light backscatter profile during coagulation whereas the light backscatter profile during syneresis was a function of temperature and cutting time. The results of this study suggest that there is an optimum firmness at which the gel should be cut to achieve maximum retention of fat and an optimum curd moisture content to maximize product yield and quality. It was determined that to maximize curd yield and quality, it is necessary to maximize firmness while avoiding rapid coarsening of the gel network and microsyneresis. These results could contribute to the optimization of the cheese-making process.
Resumo:
The objective of this study was to investigate the potential application of mid-infrared spectroscopy for determination of selected sensory attributes in a range of experimentally manufactured processed cheese samples. This study also evaluates mid-infrared spectroscopy against other recently proposed techniques for predicting sensory texture attributes. Processed cheeses (n = 32) of varying compositions were manufactured on a pilot scale. After 2 and 4 wk of storage at 4 degrees C, mid-infrared spectra ( 640 to 4,000 cm(-1)) were recorded and samples were scored on a scale of 0 to 100 for 9 attributes using descriptive sensory analysis. Models were developed by partial least squares regression using raw and pretreated spectra. The mouth-coating and mass-forming models were improved by using a reduced spectral range ( 930 to 1,767 cm(-1)). The remaining attributes were most successfully modeled using a combined range ( 930 to 1,767 cm(-1) and 2,839 to 4,000 cm(-1)). The root mean square errors of cross-validation for the models were 7.4(firmness; range 65.3), 4.6 ( rubbery; range 41.7), 7.1 ( creamy; range 60.9), 5.1(chewy; range 43.3), 5.2(mouth-coating; range 37.4), 5.3 (fragmentable; range 51.0), 7.4 ( melting; range 69.3), and 3.1 (mass-forming; range 23.6). These models had a good practical utility. Model accuracy ranged from approximate quantitative predictions to excellent predictions ( range error ratio = 9.6). In general, the models compared favorably with previously reported instrumental texture models and near-infrared models, although the creamy, chewy, and melting models were slightly weaker than the previously reported near-infrared models. We concluded that mid-infrared spectroscopy could be successfully used for the nondestructive and objective assessment of processed cheese sensory quality..
Resumo:
The objective of this study was to determine the potential of mid-infrared spectroscopy coupled with multidimensional statistical analysis for the prediction of processed cheese instrumental texture and meltability attributes. Processed cheeses (n = 32) of varying composition were manufactured in a pilot plant. Following two and four weeks storage at 4 degrees C samples were analysed using texture profile analysis, two meltability tests (computer vision, Olson and Price) and mid-infrared spectroscopy (4000-640 cm(-1)). Partial least squares regression was used to develop predictive models for all measured attributes. Five attributes were successfully modelled with varying degrees of accuracy. The computer vision meltability model allowed for discrimination between high and low melt values (R-2 = 0.64). The hardness and springiness models gave approximate quantitative results (R-2 = 0.77) and the cohesiveness (R-2 = 0.81) and Olson and Price meltability (R-2 = 0.88) models gave good prediction results. (c) 2006 Elsevier Ltd. All rights reserved..
Resumo:
The objective of this study was to determine the potential of mid-infrared spectroscopy in conjunction with partial least squares (PLS) regression to predict various quality parameters in cheddar cheese. Cheddar cheeses (n = 24) were manufactured and stored at 8 degrees C for 12 mo. Mid-infrared spectra (640 to 4000/cm) were recorded after 4, 6, 9, and 12 mo storage. At 4, 6, and 9 mo, the water-soluble nitrogen (WSN) content of the samples was determined and the samples were also evaluated for 11 sensory texture attributes using descriptive sensory analysis. The mid-infrared spectra were subjected to a number of pretreatments, and predictive models were developed for all parameters. Age was predicted using scatter-corrected, 1st derivative spectra with a root mean square error of cross-validation (RMSECV) of 1 mo, while WSN was predicted using 1st derivative spectra (RMSECV = 2.6%). The sensory texture attributes most successfully predicted were rubbery, crumbly, chewy, and massforming. These attributes were modeled using 2nd derivative spectra and had, corresponding RMSECV values in the range of 2.5 to 4.2 on a scale of 0 to 100. It was concluded that mid-infrared spectroscopy has the potential to predict age, WSN, and several sensory texture attributes of cheddar cheese..
Effect of milk fat concentration and gel firmness on syneresis during curd stirring in cheese-making
Resumo:
An experiment was undertaken to investigate the effect of milk fat level (0%, 2.5% and 5.0% w/w) and gel firmness level at cutting (5, 35 and 65 Pa) on indices of syneresis, while curd was undergoing stirring. The curd moisture content, yield of whey, fat in whey and casein fines in whey were measured at fixed intervals between 5 and 75 min after cutting the gel. The casein level in milk and clotting conditions was kept constant in all trials. The trials were carried out using recombined whole milk in an 11 L cheese vat. The fat level in milk had a large negative effect on the yield of whey. A clear effect of gel firmness on casein fines was observed. The best overall prediction, in terms of coefficient of determination, was for curd moisture content using milk fat concentration, time after gel cutting and set-to-cut time (R2 = 0.95).
Resumo:
Previous studies have reported that cheese curd syneresis kinetics can be monitored by dilution of chemical tracers, such as Blue Dextran, in whey. The objective of this study was to evaluate an improved tracer method to monitor whey volumes expelled over time during syneresis. Two experiments with different ranges of milk fat (0-5% and 2.3-3.5%) were carried out in an 11 L double-O laboratory scale cheese vat. Tracer was added to the curd-whey mixture during the cutting phase of cheese making and samples were taken at 10 min intervals up to 75 min after cutting. The volume of whey expelled was measured gravimetrically and the dilution of tracer in the whey was measured by absorbance at 620 nm. The volumes of whey expelled were significantly reduced at higher milk fat levels. Whey yield was predicted with a SEP ranging from 3.2 to 6.3 g whey/100 mL of milk and a CV ranging from 2.03 to 2.7% at different milk fat levels.
Resumo:
This paper reviews the current state of development of both near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for process monitoring, quality control, and authenticity determination in cheese processing. Infrared spectroscopy has been identified as an ideal process analytical technology tool, and recent publications have demonstrated the potential of both NIR and MIR spectroscopy, coupled with chemometric techniques, for monitoring coagulation, syneresis, and ripening as well as determination of authenticity, composition, sensory, and rheological parameters. Recent research is reviewed and compared on the basis of experimental design, spectroscopic and chemometric methods employed to assess the potential of infrared spectroscopy as a technology for improving process control and quality in cheese manufacture. Emerging research areas for these technologies, such as cheese authenticity and food chain traceability, are also discussed.