62 resultados para Letters in word recognition
Resumo:
The typographical naivety of much scientific legibility research has caused designers to question the value of the research and the results. Examining the reasons underlying this questioning, the paper discusses the importance of designers being more accepting of scientific findings, and why legibility investigations have value. To demonstrate how typographic knowledge can be incorporated into the design of studies to increase their validity, the paper reports on a new investigation into the role of serifs when viewed at a distance. The experiment looks into the identification of the lowercase letters ‘j’, ‘i’, ‘l’, ‘b’, ‘h’, ‘n’, ‘u’, and ‘a’ in isolation. All of the letters originate in the same typeface and are presented in one version with serifs and one version without serifs. Although the experiment found no overall legibility difference between the sans serif and the serif versions, the study showed that letters with serifs placed on the vertical extremes were more legible at a distance than the same letters in a sans serif. These findings can therefore provide specific guidance on the design of individual letters and demonstrate the product of collaboration between designer and scientist on the planning, implementation, and analysis of the study.
Resumo:
The aim of the study was to compare the antimicrobial activities of freshly-made, heat-treated (HT), and 14 d stored (+)-Catechin solutions with (+)-catechin flavanol isomers in the presence of copper sulphate. (+)-Catechin activity was investigated when combined with different ratios of Cu2+; 100°C heat treatment; autoclaving; and 14 d storage against Staphylococcus aureus. Cu2+-(+)-Catechin complexation, isomer structure-activity relationships, and H2O2 generation were also investigated. Freshly-made, HT, and 14d stored flavanols showed no activity. Whilst combined Cu2+-autoclaved (+)-Catechin and -HT(+)-Catechin activities were similar, HT(+)-Catechin was more active than either freshly-made (+)-catechin (generating more H2O2) or (-)-Epicatechin (though it generated less H2O2) or 14d-(+)-Catechin (which had similar activity to Cu2+ controls - though it generated more H2O2). When combined with Cu2+, in terms of rates of activity, HT(+)-Catechin was lower than (-)-Epigallocatechin gallate and greater than freshly-made (+)-Catechin. Freshly-made and HT(+)-Catechin formed acidic complexes with Cu2+ as indicated by pH and UV-vis measurements although pH changes did not account for antimicrobial activity. Freshly-made and HT(+)-Catechin both formed Cu2+ complexes. The HT(+)-Catechin complex generated more H2O2 which could explain its higher antimicrobial activity.