87 resultados para Learning space design
Resumo:
As laid out in its convention there are 8 different objectives for ECMWF. One of the major objectives will consist of the preparation, on a regular basis, of the data necessary for the preparation of medium-range weather forecasts. The interpretation of this item is that the Centre will make forecasts once a day for a prediction period of up to 10 days. It is also evident that the Centre should not carry out any real weather forecasting but merely disseminate to the member countries the basic forecasting parameters with an appropriate resolution in space and time. It follows from this that the forecasting system at the Centre must from the operational point of view be functionally integrated with the Weather Services of the Member Countries. The operational interface between ECMWF and the Member Countries must be properly specified in order to get a reasonable flexibility for both systems. The problem of making numerical atmospheric predictions for periods beyond 4-5 days differs substantially from 2-3 days forecasting. From the physical point we can define a medium range forecast as a forecast where the initial disturbances have lost their individual structure. However we are still interested to predict the atmosphere in a similar way as in short range forecasting which means that the model must be able to predict the dissipation and decay of the initial phenomena and the creation of new ones. With this definition, medium range forecasting is indeed very difficult and generally regarded as more difficult than extended forecasts, where we usually only predict time and space mean values. The predictability of atmospheric flow has been extensively studied during the last years in theoretical investigations and by numerical experiments. As has been discussed elsewhere in this publication (see pp 338 and 431) a 10-day forecast is apparently on the fringe of predictability.
Cross-layer design for MIMO systems over spatially correlated and keyhole Nakagami-m fading channels
Resumo:
Cross-layer design is a generic designation for a set of efficient adaptive transmission schemes, across multiple layers of the protocol stack, that are aimed at enhancing the spectral efficiency and increasing the transmission reliability of wireless communication systems. In this paper, one such cross-layer design scheme that combines physical layer adaptive modulation and coding (AMC) with link layer truncated automatic repeat request (T-ARQ) is proposed for multiple-input multiple-output (MIMO) systems employing orthogonal space--time block coding (OSTBC). The performance of the proposed cross-layer design is evaluated in terms of achievable average spectral efficiency (ASE), average packet loss rate (PLR) and outage probability, for which analytical expressions are derived, considering transmission over two types of MIMO fading channels, namely, spatially correlated Nakagami-m fading channels and keyhole Nakagami-m fading channels. Furthermore, the effects of the maximum number of ARQ retransmissions, numbers of transmit and receive antennas, Nakagami fading parameter and spatial correlation parameters, are studied and discussed based on numerical results and comparisons. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
The relative contributions of five variables (Stereoscopy, screen size, field of view, level of realism and level of detail) of virtual reality systems on spatial comprehension and presence are evaluated here. Using a variable-centered approach instead of an object-centric view as its theoretical basis, the contributions of these five variables and their two-way interactions are estimated through a 25-1 fractional factorial experiment (screening design) of resolution V with 84 subjects. The experiment design, procedure, measures used, creation of scales and indices, results of statistical analysis, their meaning and agenda for future research are elaborated.
Resumo:
Problem-Based Learning, despite recent controversies about its effectiveness, is used extensively as a teaching method throughout higher education. In meteorology, there has been little attempt to incorporate Problem-Based Learning techniques into the curriculum. Motivated by a desire to enhance the reflective engagement of students within a current field course module, this project describes the implementation of two test Problem-Based Learning activities and testing and improvement using several different and complementary means of evaluation. By the end of a 2-year program of design, implementation, testing, and reflection and re-evaluation, two robust, engaging activities have been developed that provide an enhanced and diverse learning environment in the field course. The results suggest that Problem-Based Learning techniques would be a useful addition to the meteorology curriculum and suggestions for courses and activities that may benefit from this approach are included in the conclusions.
Resumo:
This article presents a study examining how narrative structure and narrative complexity might influence the performance of second language learners. Forty learners of English in London and sixty learners in Teheran were asked to retell cartoon stories from picture prompts. Each performed two of four narrative tasks that had different degrees of narrative structure (loose or tight) and of storyline complexity (with or without background events). Results support the findings of previous research that tight task structure is connected to increased accuracy and that narratives involving background information give rise to more complex syntax. A comparison of the data from the London and Teheran cohorts showed that the learners in London used significantly more complex syntax and diverse vocabulary even though they did not differ from the Teheran learners in other performance dimensions.
Resumo:
Purpose – The purpose of this paper is to demonstrate analytically how entrepreneurial action as learning relating to diversifying into technical clothing – i.e. a high-value manufacturing sector – can take place. This is particularly relevant to recent discussion and debate in academic and policy-making circles concerning the survival of the clothing manufacture industry in developed industrialised countries. Design/methodology/approach – Using situated learning theory (SLT) as the major analytical lens, this case study examines an episode of entrepreneurial action relating to diversification into a high-value manufacturing sector. It is considered on instrumentality grounds, revealing wider tendencies in the management of knowledge and capabilities requisite for effective entrepreneurial action of this kind. Findings – Boundary events, brokers, boundary objects, membership structures and inclusive participation that addresses power asymmetries are found to be crucial organisational design elements, enabling the development of inter- and intracommunal capacities. These together constitute a dynamic learning capability, which underpins entrepreneurial action, such as diversification into high-value manufacturing sectors. Originality/value – Through a refinement of SLT in the context of entrepreneurial action, the paper contributes to an advancement of a substantive theory of managing technological knowledge and capabilities for effective diversification into high-value manufacturing sectors.
Resumo:
Good urban design has the power to aid in the provision of inclusive journey environments, yet traditionally neglects the perspective of the cyclist. This paper starts from the premise that more can be done to understand and articulate cyclists’ experiences and perceptions of the urban environment in which they cycle, as part of a closer linking of urban design qualities with transport planning and infrastructure interventions. This approach is particularly applicable in relation to older cyclists, a group whose needs are often poorly understood and for whom perceptions can significantly influence mobile behaviours. Currently, knowledge regarding the relationship between the built environment and physical activity, including cycling, in older adults is limited. As European countries face up to the challenges associated with ageing populations, some metropolitan regions, such as Munich, Germany, are making inroads into widening cycling’s appeal across generations through a combination of urban design, policy and infrastructure initiatives. The paper provides a systematic understanding of the urban design qualities and built environment features that affect cycling participation and have the potential to contribute towards healthy ageing. Urban design features such as legibility, aesthetics, scale and open space have been shown to influence and affect other mobile behaviours (e.g. walking), but their role as a mediator in cycle behaviour remains under-explored. Many of these design ‘qualities’ are related to individual perceptions; capturing these can help build a picture of quality in the built environment that includes an individual’s relationship with their local neighbourhood and its influences on their mobility choices. Issues of accessibility, facilities, and safety in cycling remain crucial, and, when allied to these design ‘qualities‘, provides a more rounded reflection of everyday journeys and trips taken or desired. The paper sets out the role that urban design might play in mediating these critical mobility issues, and in particular, in better understanding the ‘quality of the journey’. It concludes by highlighting the need for designers, policy makers, planners and academics to consider the role that design can play in encouraging cycle participation, especially as part of a healthy ageing agenda.
Resumo:
Building Information Modeling (BIM) is the process of structuring, capturing, creating, and managing a digital representation of physical and/or functional characteristics of a built space [1]. Current BIM has limited ability to represent dynamic semantics, social information, often failing to consider building activity, behavior and context; thus limiting integration with intelligent, built-environment management systems. Research, such as the development of Semantic Exchange Modules, and/or the linking of IFC with semantic web structures, demonstrates the need for building models to better support complex semantic functionality. To implement model semantics effectively, however, it is critical that model designers consider semantic information constructs. This paper discusses semantic models with relation to determining the most suitable information structure. We demonstrate how semantic rigidity can lead to significant long-term problems that can contribute to model failure. A sufficiently detailed feasibility study is advised to maximize the value from the semantic model. In addition we propose a set of questions, to be used during a model’s feasibility study, and guidelines to help assess the most suitable method for managing semantics in a built environment.
Resumo:
The UK new-build housing sector is facing dual pressures to expand supply, whilst delivering against tougher planning and Building Regulation requirements; predominantly in the areas of sustainability. The sector is currently responding by significantly scaling up production and incorporating new technical solutions into new homes. This trajectory of up-scaling and technical innovation has been of research interest; but this research has primarily focus on the ‘upstream’ implications for house builders’ business models and standardised design templates. There has been little attention, though, to the potential ‘downstream’ implications of the ramping up of supply and the introduction of new technologies for build quality and defects. This paper contributes to our understanding of the ‘downstream’ implications through a synthesis of the current UK defect literature with respect to new-build housing. It is found that the prevailing emphasis in the literature is limited to the responsibility, pathology and statistical analysis of defects (and failures). The literature does not extend to how house builders individually and collectively, in practice, collect and learn from defects information. The paper concludes by describing an ongoing collaborative research programme with the National House Building Council (NHBC) to: (a) understand house builders’ localised defects analysis procedures, and their current knowledge feedback loops to inform risk management strategies; and, (b) building on this understanding, design and test action research interventions to develop new data capture, learning processes and systems to reduce targeted defects.
Resumo:
The research which underpins this paper began as a doctoral project exploring archaic beliefs concerning Otherworlds and Thin Places in two particular landscapes - the West Coast of Wales and the West Coast of Ireland. A Thin Place is an ancient Celtic Christian term used to describe a marginal, liminal realm, beyond everyday human experience and perception, where mortals could pass into the Otherworld more readily, or make contact with those in the Otherworld more willingly. To encounter a Thin Place in ancient folklore was significant because it engendered a state of alertness, an awakening to what the theologian John O’ Donohue (2004: 49) called “the primal affection.” These complex notions and terms will be further explored in this paper in relation to Education. Thin Teaching is a pedagogical approach which offers students the space to ruminate on the possibility that their existence can be more and can mean more than the categories they believed they belonged to or felt they should inhabit. Central to the argument then, is that certain places and their inhabitants can become revitalised by sensitively considered teaching methodologies. This raises interesting questions about the role spirituality plays in teaching practice as a tool for healing in the twenty first century.
Resumo:
The “littleBits go LARGE" project extends littleBits electronic modules, an existing product that is aimed at simplifying electronics for a wide range of audiences. In this project we augment the littleBits modules to make them more accessible to people with learning disabilities. We will demonstrate how we have made the modules easier to handle and manipulate physically, and how we are augmenting the design of the modules to make their functions more obvious and understandable.
Resumo:
We extend extreme learning machine (ELM) classifiers to complex Reproducing Kernel Hilbert Spaces (RKHS) where the input/output variables as well as the optimization variables are complex-valued. A new family of classifiers, called complex-valued ELM (CELM) suitable for complex-valued multiple-input–multiple-output processing is introduced. In the proposed method, the associated Lagrangian is computed using induced RKHS kernels, adopting a Wirtinger calculus approach formulated as a constrained optimization problem similarly to the conventional ELM classifier formulation. When training the CELM, the Karush–Khun–Tuker (KKT) theorem is used to solve the dual optimization problem that consists of satisfying simultaneously smallest training error as well as smallest norm of output weights criteria. The proposed formulation also addresses aspects of quaternary classification within a Clifford algebra context. For 2D complex-valued inputs, user-defined complex-coupled hyper-planes divide the classifier input space into four partitions. For 3D complex-valued inputs, the formulation generates three pairs of complex-coupled hyper-planes through orthogonal projections. The six hyper-planes then divide the 3D space into eight partitions. It is shown that the CELM problem formulation is equivalent to solving six real-valued ELM tasks, which are induced by projecting the chosen complex kernel across the different user-defined coordinate planes. A classification example of powdered samples on the basis of their terahertz spectral signatures is used to demonstrate the advantages of the CELM classifiers compared to their SVM counterparts. The proposed classifiers retain the advantages of their ELM counterparts, in that they can perform multiclass classification with lower computational complexity than SVM classifiers. Furthermore, because of their ability to perform classification tasks fast, the proposed formulations are of interest to real-time applications.
Resumo:
In cooperative communication networks, owing to the nodes' arbitrary geographical locations and individual oscillators, the system is fundamentally asynchronous. Such a timing mismatch may cause rank deficiency of the conventional space-time codes and, thus, performance degradation. One efficient way to overcome such an issue is the delay-tolerant space-time codes (DT-STCs). The existing DT-STCs are designed assuming that the transmitter has no knowledge about the channels. In this paper, we show how the performance of DT-STCs can be improved by utilizing some feedback information. A general framework for designing DT-STC with limited feedback is first proposed, allowing for flexible system parameters such as the number of transmit/receive antennas, modulated symbols, and the length of codewords. Then, a new design method is proposed by combining Lloyd's algorithm and the stochastic gradient-descent algorithm to obtain optimal codebook of STCs, particularly for systems with linear minimum-mean-square-error receiver. Finally, simulation results confirm the performance of the newly designed DT-STCs with limited feedback.
Resumo:
Design patterns are a way of sharing evidence-based solutions to educational design problems. The design patterns presented in this paper were produced through a series of workshops, which aimed to identify Massive Open Online Course (MOOC) design principles from workshop participants’ experiences of designing, teaching and learning on these courses. MOOCs present a challenge for the existing pedagogy of online learning, particularly as it relates to promoting peer interaction and discussion. MOOC cohort sizes, participation patterns and diversity of learners mean that discussions can remain superficial, become difficult to navigate, or never develop beyond isolated posts. In addition, MOOC platforms may not provide sufficient tools to support moderation. This paper draws on four case studies of designing and teaching on a range of MOOCs presenting seven design narratives relating to the experience in these MOOCs. Evidence presented in the narratives is abstracted in the form of three design patterns created through a collaborative process using techniques similar to those used in collective autoethnography. The patterns: “Special Interest Discussions”, “Celebrity Touch” and “Look and Engage”, draw together shared lessons and present possible solutions to the problem of creating, managing and facilitating meaningful discussion in MOOCs through the careful use of staged learning activities and facilitation strategies.