87 resultados para Knoevenagel condensation
Resumo:
This paper represents a study of the transient changes occurring in temperature, and moisture and oil contents during the so called “post-frying drainage”—which is the duration for which a product is held in the head space of the fryer after it is removed from the oil. Since most of the oil adhering to the product penetrates into the structure during this period, this paper examines the effects of applying vacuum during drainage (1.33 kPa) to maintain the product temperature consistently above the water saturation temperature corresponding to the prevailing pressure (11 °C), which potentially eliminates water condensation and prevents the occluded surface oil from penetrating into the product structure. Draining under vacuum significantly lowers the oil content of potato chips by 38% compared to atmospheric drainage. This phenomenon can be further confirmed by confocal laser scanning microscopy (CLSM) images, which show that the boundary between the core and the crust regions is clearly visible in the case of vacuum drainage, whereas in the case of atmospheric drainage, the oil is distributed throughout the structure. Unfortunately, the same approach did not reduce the oil content of French fries—the oil content of vacuum-drained product was found similar to the product obtained by draining under atmospheric pressure. This is because the reduction in oil content only occurs when there is net moisture evaporation from the product and the evaporation rate is sufficient to force out the oil from the product; this was clearly not the case with French fries. The CLSM images show that the oil distribution in the products drained under atmospheric pressure and vacuum was similar.
Resumo:
Idealised convection-permitting simulations are used to quantify the impact of embedded convection on the precipitation generated by moist flow over midlatitude mountain ridges. A broad range of mountain dimensions and moist stabilities are considered to encompass a spectrum of physically plausible flows. The simulations reveal that convection only enhances orographic precipitation in cap clouds that are otherwise unable to efficiently convert cloud condensate into precipitate. For tall and wide mountains (e.g. the Washington Cascades or the southern Andes), precipitate forms efficiently through vapour deposition and collection, even in the absence of embedded convection. When embedded convection develops in such clouds, it produces competing effects (enhanced condensation in updraughts and enhanced evaporation through turbulent mixing and compensating subsidence) that cancel to yield little net change in precipitation. By contrast, convection strongly enhances precipitation over short and narrow mountains (e.g. the UK Pennines or the Oregon Coastal Range) where precipitation formation is otherwise highly inefficient. Although cancellation between increased condensation and evaporation still occurs, the enhanced precipitation formation within the convective updraughts leads to a net increase in precipitation efficiency. The simulations are physically interpreted through non-dimensional diagnostics and relevant time-scales that govern advective, microphysical, and convective processes.
Resumo:
A detailed geochemical analysis was performed on the upper part of the Maiolica Formation in the Breggia (southern Switzerland) and Capriolo sections (northern Italy). The analysed sediments consist of well-bedded, partly siliceous, pelagic carbonate, which lodges numerous thin, dark and organic-rich layers. Stable-isotope, phosphorus, organic-carbon and a suite of redox-sensitive trace-element contents (RSTE: Mo, U, Co, V and As) were measured. The RSTE pattern and Corg:Ptot ratios indicate that most organic-rich layers were deposited under dysaerobic rather than anaerobic conditions and that latter conditions were likely restricted to short intervals in the latest Hauterivian, the early Barremian and the pre-Selli early Aptian. Correlations are both possible with organic-rich intervals in central Italy (the Gorgo a Cerbara section) and the Boreal Lower Saxony Basin, as well as with the facies and drowning pattern in the Helvetic segment of the northern Tethyan carbonate platform. Our data and correlations suggest that the latest Hauterivian witnessed the progressive installation of dysaerobic conditions in the Tethys, which went along with the onset in sediment condensation, phosphogenesis and platform drowning on the northern Tethyan margin, and which culminated in the Faraoni anoxic episode. This episode is followed by further episodes of dysaerobic conditions in the Tethys and the Lower Saxony Basin, which became more frequent and progressively stronger in the late early Barremian. Platform drowning persisted and did not halt before the latest early Barremian. The late Barremian witnessed diminishing frequencies and intensities in dysaerobic conditions, which went along with the progressive installation of the Urgonian carbonate platform. Near the Barremian-Aptian boundary, the increasing density in dysaerobic episodes in the Tethyan and Lower Saxony Basins is paralleled by a change towards heterozoan carbonate production on the northern Tethyan shelf. The following return to more oxygenated conditions is correlated with the second phase of Urgonian platform growth and the period immediately preceding and corresponding to the Selli anoxic episode is characterised by renewed platform drowning and the change to heterozoan carbonate production. Changes towards more humid climate conditions were the likely cause for the repetitive installation of dys- to anaerobic conditions in the Tethyan and Boreal basins and the accompanying changes in the evolution of the carbonate platform towards heterozoan carbonate-producing ecosystems and platform drowning.
Resumo:
In order to achieve sustainability it is necessary to balance the interactions between the built and natural environment. Biodiversity plays an important part towards sustainability within the built environment, especially as the construction industry comes under increasing pressure to take ecological concerns into account. Bats constitute an important component of urban biodiversity and several species are now highly dependent on buildings, making them particularly vulnerable to anthropogenic and environmental changes. As many buildings suitable for use as bat roosts age, they often require re-roofing and traditional bituminous roofing felts are frequently being replaced with breathable roofing membranes (BRMs), which are designed to reduce condensation. Whilst the current position of bats is better in many respects than 30 years ago, new building regulations and modern materials, may substantially reduce the viability of existing roosts. At the same time building regulations require that materials be fit for purpose and with anecdotal evidence that both bats and BRMs may experience problems when the two interact, it is important to know what roost characteristics are essential for house dwelling bats and how these and BRMs may be affected. This paper reviews current literature and knowledge and considers the possible ways in which bats and BRMs may interact, how this could affect existing bat roosts within buildings and the implications for BRM service life predictions and warranties. It concludes that in order for the construction and conservation sectors to work together in solving this issue, a set of clear guidelines should be developed for use on a national level.
Resumo:
The reaction of VO(acac)(2) with the ONO-chelator obtained by the condensation of salicylaldehyde with 2-hydroxybenzoylhydrazine (H2L) in a monohydric alcohol. (ROH) medium produces VO(OR)L]-type oxidoalkoxido complexes (1-7) where R = Me, Pr-n, Pr-i, Bu-n, Bu-i, Bu-t and (n)Pen. All the complexes show the metal atom to have a five-coordinate square pyramidal environment, although in some complexes there is an additional weak V center dot center dot center dot O interaction in the sixth axial position. In acetonitrile medium and in the presence of a cis-diol (ethylene glycol), H2L reacts with VO(acac)(2) to form a six-coordinate complex, [VO(OCH2CH2OH)L] (8). When the reaction is carried out in acetonitrile medium in the presence of 2-amino ethanol, a completely different type of product containing the square pyramidal complex anion [VO2L](-) associated with the cation [NH3CH2CH2OH](+) is obtained. It was noted previously that on being reacted with monodentate nitrogen donor bases B (which are stronger than pyridine), the [VO(OR)L] complexes react to form the same complex anion [VO2L](-) associated with the corresponding cation [BH](+). The coordination environment around the V(V) acceptor center of the water soluble [BH](+)[VO2L](-)satisfies one of the several requirements for an efficient antidiabetic vanadium species such as water solubility, nature of donor atoms of the ligand and their disposition around the VO2+ acceptor center.
Resumo:
Two new Fe-III complexes, [Fe2L2(mu-OMe)(2)(NCS)(2)] (1) and [Fe2L2(mu-N-3)(2)(N-3)(2)] (2), have been synthesized using a N,N,O-donor tridentate Schiff base ligand HL {2-[(2-dimethylaminoethylimino)methyl]phenol}, the condensation product of salicylaldehyde and N,N-dimethyl-1,2-diaminoethane. The complexes were characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. Both crystal structures are centrosymmetric dimers containing two Fe-III atoms, which are bridged in compound 1 by two methoxy anions and in compound 2 by two mu-1,1-azides. The chelating tridentate Schiff base and a terminal thiocyanato (for 1) or azido (for 2) group complete the hexacoordination of the distorted octahedral environment of each iron center. The magnetic properties of compound 1 show the presence of antiferromagnetic exchange interactions mediated by double methoxy bridges (J = -29.45 cm(-1)). Compound 2 shows the presence of very weak ferromagnetic exchange interactions mediated by double mu-1,1-N-3 bridges (J = 1.08 cm(-1)).
Resumo:
Three Cu(II)-azido complexes of formula [Cu2L2(N-3)(2)] (1), [Cu2L2(N-3)(2)]center dot H2O (2) and [CuL(N-3)](n) (3) have been synthesized using the same tridentate Schiff base ligand HL (2-[(3-methylaminopropylimino)-methyl]-phenol), the condensation product of N-methyl-1,3-propanediamine and salicyldehyde). Compounds 1 and 2 are basal-apical mu-1,1 double azido bridged dimers. The dimeric structure of 1 is centro-symmetric but that of 2 is non-centrommetric. Compound 3 is a mu-1,1 single azido bridged 1D chain. The three complexes interconvert in solution and can be obtained in pure form by carefully controlling the synthetic conditions. Compound 2 undergoes an irreversible transformation to 1 upon dehydration in the solid state. The magnetic properties of compounds 1 and 2 show the presence of weak antiferromagnetic exchange interactions mediated by the double 1,1-N-3 azido bridges (J = -2.59(4) and -0.10(1) cm-(1), respectively). The single 1,1-N-3 bridge in compound 3 mediates a negligible exchange interaction.
Resumo:
A tetranuclear Cu(II) complex [Cu4L4(H2O)4](ClO4)4 has been synthesized using the terdentate Schiff base 2-(pyridine-2-yliminomethyl)-phenol (HL) (the condensation product of salicylaldehyde and 2-aminopyridine) and copper perchlorate. Chemical characterizations such as IR and UV/Vis of the complex have been carried out. A single-crystal diffraction study shows that the complex contains a nearly planar tetranuclear core containing four copper atoms, which occupy four equivalent five-coordinate sites with a square pyramidal environment. Magnetic measurements have been carried out over the temperature range 2–300K and with 100Oe field strengths. Analysis of magnetic susceptibility data indicates a strong antiferromagnetic (J1=−638cm−1) exchange interaction between diphenoxo-bridged Cu(II) centers and a moderate antiferromagnetic (J2=−34cm−1) interaction between N–C–N bridged Cu(II) centers. Magnetic exchange interactions (J’s) are also discussed on the basis of a computational study using DFT methodology. The spin density distribution (singlet ground state) is calculated to visualize the effect of delocalization of spin density through bridging groups.
Resumo:
Potential vorticity (PV) succinctly describes the evolution of large-scale atmospheric flow because of its material conservation and invertibility properties. However, diabatic processes in extratropical cyclones can modify PV and influence both mesoscale weather and the evolution of the synoptic-scale wave pattern. In this investigation, modification of PV by diabatic processes is diagnosed in a Met Office Unified Model (MetUM) simulation of a North Atlantic cyclone using a set of PV tracers. The structure of diabatic PV within the extratropical cyclone is investigated and linked to the processes responsible for it. On the mesoscale, a tripole of diabatic PV is generated across the tropopause fold extending down to the cold front. The structure results from a dipole in heating across the frontal interface due to condensation in the warm conveyor belt flanking the upper side of the fold and evaporation of precipitation in the dry intrusion and below. On isentropic surfaces intersecting the tropopause, positive diabatic PV is generated on the stratospheric side, while negative diabatic PV is generated on the tropospheric side. The stratospheric diabatic PV is generated primarily by long-wave cooling which peaks at the tropopause itself due to the sharp gradient in humidity there. The tropospheric diabatic PV originates locally from the long-wave radiation and non-locally by advection out of the top of heating associated with the large-scale cloud, convection and boundary layer schemes. In most locations there is no diabatic modification of PV at the tropopause itself but diabatic PV anomalies would influence the tropopause indirectly through the winds they induce and subsequent advection. The consequences of this diabatic PV dipole for the evolution of synoptic-scale wave patterns are discussed.
Resumo:
The 1:1 condensation of 1,2-diaminopropane and 1-phenylbutane-1,3-dione at high dilution gives a mixture of two positional isomers of terdentate mono-condensed Schiff bases 6-amino-3-methyl-1-phenyl-4-aza-2-hepten-1-one (HAMPAH) and 6-amino-3,5-dimethyl-1-phenyl-4-aza-2-hexen-1-one (HADPAH). The mixture of the terdentate ligands has been used for further condensation with pyridine-2-carboxaldehyde or 2-acetylpyridine to obtain the unsymmetrical tetradentate Schiff base ligands. The tetradentate Schiff bases are then allowed to react with the methanol solution of copper(II) and nickel(II) perchlorate separately. The X-ray diffraction confirms the structures of two of the complexes and shows that the condensation site of the diamine with 1-phenylbutane-1,3-dione is the same.
Resumo:
A mononuclear octahedral nickel(II) complex [Ni(HL(1))(2)](SCN)(2) (1) and an unusual penta-nuclear complex [{(NiL(2))(mu-SCN)}(4)Ni(NCS)(2)]center dot 2CH(3)CN (2) where HL(1) = 3-(2-aminoethylimino)butan-2-one oxime and HL(2) = 3-(hydroxyimino)butan-2-ylidene)amino)propylimino)butan-2-one oxime have been prepared and characterized by X-ray crystallography. The mono-condensed ligand, HL(1), was prepared by the 1:1 condensation of the 1,2-diaminoethane with diacetylmonoxime in methanol under high dilution. Complex 1 is found to be a mer isomer and the amine hydrogen atoms are involved in extensive hydrogen bonding with the thiocyanate anions. The dicondensed ligand, HL(2), was prepared by the 1:2 condensation of the 1,3-diaminopropane with diacetylmonoxime in methanol. The central nickel(II) in 2 is coordinated by six nitrogen atoms of six thiocyanate groups, four of which utilize their sulphur atoms to connect four NiL2 moieties to form a penta-nuclear complex and it is unique in the sense that this is the first thiocyanato bridged penta-nuclear nickel(II) compound with Schiff base ligands.
Resumo:
Abstract This study presents a model intercomparison of four regional climate models (RCMs) and one variable resolution atmospheric general circulation model (AGCM) applied over Europe with special focus on the hydrological cycle and the surface energy budget. The models simulated the 15 years from 1979 to 1993 by using quasi-observed boundary conditions derived from ECMWF re-analyses (ERA). The model intercomparison focuses on two large atchments representing two different climate conditions covering two areas of major research interest within Europe. The first is the Danube catchment which represents a continental climate dominated by advection from the surrounding land areas. It is used to analyse the common model error of a too dry and too warm simulation of the summertime climate of southeastern Europe. This summer warming and drying problem is seen in many RCMs, and to a less extent in GCMs. The second area is the Baltic Sea catchment which represents maritime climate dominated by advection from the ocean and from the Baltic Sea. This catchment is a research area of many studies within Europe and also covered by the BALTEX program. The observed data used are monthly mean surface air temperature, precipitation and river discharge. For all models, these are used to estimate mean monthly biases of all components of the hydrological cycle over land. In addition, the mean monthly deviations of the surface energy fluxes from ERA data are computed. Atmospheric moisture fluxes from ERA are compared with those of one model to provide an independent estimate of the convergence bias derived from the observed data. These help to add weight to some of the inferred estimates and explain some of the discrepancies between them. An evaluation of these biases and deviations suggests possible sources of error in each of the models. For the Danube catchment, systematic errors in the dynamics cause the prominent summer drying problem for three of the RCMs, while for the fourth RCM this is related to deficiencies in the land surface parametrization. The AGCM does not show this drying problem. For the Baltic Sea catchment, all models similarily overestimate the precipitation throughout the year except during the summer. This model deficit is probably caused by the internal model parametrizations, such as the large-scale condensation and the convection schemes.
Resumo:
The very first numerical models which were developed more than 20 years ago were drastic simplifications of the real atmosphere and they were mostly restricted to describe adiabatic processes. For prediction of a day or two of the mid tropospheric flow these models often gave reasonable results but the result deteriorated quickly when the prediction was extended further in time. The prediction of the surface flow was unsatisfactory even for short predictions. It was evident that both the energy generating processes as well as the dissipative processes have to be included in numerical models in order to predict the weather patterns in the lower part of the atmosphere and to predict the atmosphere in general beyond a day or two. Present-day computers make it possible to attack the weather forecasting problem in a more comprehensive and complete way and substantial efforts have been made during the last decade in particular to incorporate the non-adiabatic processes in numerical prediction models. The physics of radiational transfer, condensation of moisture, turbulent transfer of heat, momentum and moisture and the dissipation of kinetic energy are the most important processes associated with the formation of energy sources and sinks in the atmosphere and these have to be incorporated in numerical prediction models extended over more than a few days. The mechanisms of these processes are mainly related to small scale disturbances in space and time or even molecular processes. It is therefore one of the basic characteristics of numerical models that these small scale disturbances cannot be included in an explicit way. The reason for this is the discretization of the model's atmosphere by a finite difference grid or the use of a Galerkin or spectral function representation. The second reason why we cannot explicitly introduce these processes into a numerical model is due to the fact that some physical processes necessary to describe them (such as the local buoyance) are a priori eliminated by the constraints of hydrostatic adjustment. Even if this physical constraint can be relaxed by making the models non-hydrostatic the scale problem is virtually impossible to solve and for the foreseeable future we have to try to incorporate the ensemble or gross effect of these physical processes on the large scale synoptic flow. The formulation of the ensemble effect in terms of grid-scale variables (the parameters of the large-scale flow) is called 'parameterization'. For short range prediction of the synoptic flow at middle and high latitudes, very simple parameterization has proven to be rather successful.
Resumo:
Branched polyethylenimine (25 kDa) is thiolated and compared with redox-sensitive crosslinked derivatives. Both polymers thiol contents are assessed; the thiolated polymers have 390–2300 mmol SH groups/mol, whereas the crosslinked polymers have lower thiol contents. Cytotoxicity assays show that both modified polymers give lower hemolysis than unmodified PEI. Increased thiol content increases gene transfer efficiency but also elevates cytotoxicity. Crosslinking improves plasmid DNA condensation and enhances transfection efficiency, but extensive crosslinking overstabilizes the polyplexes and decreases transfection, emphasizing the need to balance polyplex stabilization and unpacking. Thus, at low levels of crosslinking, 25 kDa PEI can be an efficient redox-sensitive carrier system.
Resumo:
During the VOCALS campaign spaceborne satellite observations showed that travelling gravity wave packets, generated by geostrophic adjustment, resulted in perturbations to marine boundary layer (MBL) clouds over the south-east Pacific Ocean (SEP). Often, these perturbations were reversible in that passage of the wave resulted in the clouds becoming brighter (in the wave crest), then darker (in the wave trough) and subsequently recovering their properties after the passage of the wave. However, occasionally the wave packets triggered irreversible changes to the clouds, which transformed from closed mesoscale cellular convection to open form. In this paper we use large eddy simulation (LES) to examine the physical mechanisms that cause this transition. Specifically, we examine whether the clearing of the cloud is due to (i) the wave causing additional cloud-top entrainment of warm, dry air or (ii) whether the additional condensation of liquid water onto the existing drops and the subsequent formation of drizzle are the important mechanisms. We find that, although the wave does cause additional drizzle formation, this is not the reason for the persistent clearing of the cloud; rather it is the additional entrainment of warm, dry air into the cloud followed by a reduction in longwave cooling, although this only has a significant effect when the cloud is starting to decouple from the boundary layer. The result in this case is a change from a stratocumulus to a more patchy cloud regime. For the simulations presented here, cloud condensation nuclei (CCN) scavenging did not play an important role in the clearing of the cloud. The results have implications for understanding transitions between the different cellular regimes in marine boundary layer (MBL) clouds.