69 resultados para Jet physics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A strong correlation between the speed of the eddy-driven jet and the width of the Hadley cell is found to exist in the Southern Hemisphere, both in reanalysis data and in twenty-first-century integrations from the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report multimodel archive. Analysis of the space–time spectra of eddy momentum flux reveals that variations in eddy-driven jet speed are related to changes in the mean phase speed of midlatitude eddies. An increase in eddy phase speeds induces a poleward shift of the critical latitudes and a poleward expansion of the region of subtropical wave breaking. The associated changes in eddy momentum flux convergence are balanced by anomalous meridional winds consistent with a wider Hadley cell. At the same time, faster eddies are also associated with a strengthened poleward eddy momentum flux, sustaining a stronger westerly jet in midlatitudes. The proposed mechanism is consistent with the seasonal dependence of the interannual variability of the Hadley cell width and appears to explain at least part of the projected twenty-first-century trends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the effect of a thermal forcing confined to the midlatitudes of one hemisphere on the eddy-driven jet in the opposite hemisphere. We demonstrate the existence of an “interhemispheric teleconnection,” whereby warming (cooling) the Northern Hemisphere causes both the intertropical convergence zone (ITCZ) and the Southern Hemispheric midlatitude jet to shift northward (southward). The interhemispheric teleconnection is effected by a change in the asymmetry of the Hadley cells: as the ITCZ shifts away from the Equator, the cross-equatorial Hadley cell intensifies, fluxing more momentum toward the subtropics and sustaining a stronger subtropical jet. Changes in subtropical jet strength, in turn, alter the propagation of extratropical waves into the tropics, affecting eddy momentum fluxes and the eddy-driven westerlies. The relevance of this mechanism is demonstrated in the context of future climate change simulations, where shifts of the ITCZ are significantly related to shifts of the Southern Hemispheric eddy-driven jet in austral winter. The possible relevance of the proposed mechanism to paleoclimates is discussed, particularly with regard to theories of ice age terminations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Substantial biases in shortwave cloud forcing (SWCF) of up to ±30 W m−2are found in the midlatitudes of the Southern Hemisphere in the historical simulations of 34 CMIP5 coupled general circulation models. The SWCF biases are shown to induce surface temperature anomalies localized in the midlatitudes, and are significantly correlated with the mean latitude of the eddy-driven jet, with a negative SWCF bias corresponding to an equatorward jet latitude bias. Aquaplanet model experiments are performed to demonstrate that the jet latitude biases are primarily induced by the midlatitude SWCF anomalies, such that the jet moves toward (away from) regions of enhanced (reduced) temperature gradients. The results underline the necessity of accurately representing cloud radiative forcings in state-of-the-art coupled models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the effects of dynamical variability on clouds and radiation in observations and models and discuss their implications for cloud feedbacks. Jet shifts produce robust meridional dipoles in upper-level clouds and longwave cloud-radiative effect (CRE), but low-level clouds, which do not simply shift with the jet, dominate the shortwave CRE. Because the effect of jet variability on CRE is relatively small, future poleward jet shifts with global warming are only a second-order contribution to the total CRE changes around the midlatitudes, suggesting a dominant role for thermodynamic effects. This implies that constraining the dynamical response is unlikely to reduce the uncertainty in extratropical cloud feedback. However, we argue that uncertainty in the cloud-radiative response does affect the atmospheric circulation response to global warming, by modulating patterns of diabatic forcing. How cloud feedbacks can affect the dynamical response to global warming is an important topic of future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing optical depth poleward of 45° is a robust response to warming in global climate models. Much of this cloud optical depth increase has been hypothesized to be due to transitions from ice-dominated to liquid-dominated mixed-phase cloud. In this study, the importance of liquid-ice partitioning for the optical depth feedback is quantified for 19 Coupled Model Intercomparison Project Phase 5 models. All models show a monotonic partitioning of ice and liquid as a function of temperature, but the temperature at which ice and liquid are equally mixed (the glaciation temperature) varies by as much as 40 K across models. Models that have a higher glaciation temperature are found to have a smaller climatological liquid water path (LWP) and condensed water path and experience a larger increase in LWP as the climate warms. The ice-liquid partitioning curve of each model may be used to calculate the response of LWP to warming. It is found that the repartitioning between ice and liquid in a warming climate contributes at least 20% to 80% of the increase in LWP as the climate warms, depending on model. Intermodel differences in the climatological partitioning between ice and liquid are estimated to contribute at least 20% to the intermodel spread in the high-latitude LWP response in the mixed-phase region poleward of 45°S. It is hypothesized that a more thorough evaluation and constraint of global climate model mixed-phase cloud parameterizations and validation of the total condensate and ice-liquid apportionment against observations will yield a substantial reduction in model uncertainty in the high-latitude cloud response to warming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A strong relationship is found between changes in the meridional gradient of absorbed shortwave radiation (ASR) and Southern Hemispheric jet shifts in 21st century climate simulations of CMIP5 (Coupled Model Intercomparison Project phase 5) coupled models. The relationship is such that models with increases in the meridional ASR gradient around the southern midlatitudes, and therefore increases in midlatitude baroclinicity, tend to produce a larger poleward jet shift. The ASR changes are shown to be dominated by changes in cloud properties, with sea ice declines playing a secondary role. We demonstrate that the ASR changes are the cause, and not the result, of the intermodel differences in jet response by comparing coupled simulations with experiments in which sea surface temperature increases are prescribed. Our results highlight the importance of reducing the uncertainty in cloud feedbacks in order to constrain future circulation changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regional climate modelling system PRECIS, was run at 25 km horizontal resolution for 150 years (1949-2099) using global driving data from a five member perturbed physics ensemble (based on the coupled global climate model HadCM3). Output from these simulations was used to investigate projected changes in tropical cyclones (TCs) over Vietnam and the South China Sea due to global warming (under SRES scenario A1B). Thirty year climatological mean periods were used to look at projected changes in future (2069-2098) TCs compared to a 1961-1990 baseline. Present day results were compared qualitatively with IBTrACS observations and found to be reasonably realistic. Future projections show a 20-44 % decrease in TC frequency, although the spatial patterns of change differ between the ensemble members, and an increase of 27-53 % in the amount of TC associated precipitation. No statistically significant changes in TC intensity were found, however, the occurrence of more intense TCs (defined as those with a maximum 10 m wind speed > 35 m/s) was found to increase by 3-9 %. Projected increases in TC associated precipitation are likely caused by increased evaporation and availability of atmospheric water vapour, due to increased sea surface and atmospheric temperature. The mechanisms behind the projected changes in TC frequency are difficult to link explicitly; changes are most likely due to the combination of increased static stability, increased vertical wind shear and decreased upward motion, which suggest a decrease in the tropical overturning circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aircraft do not fly through a vacuum, but through an atmosphere whose meteorological characteristics are changing because of global warming. The impacts of aviation on climate change have long been recognised, but the impacts of climate change on aviation have only recently begun to emerge. These impacts include intensified turbulence and increased take-off weight restrictions. Here we investigate the influence of climate change on flight routes and journey times. We feed synthetic atmospheric wind fields generated from climate model simulations into a routing algorithm of the type used operationally by flight planners. We focus on transatlantic flights between London and New York, and how they change when the atmospheric concentration of carbon dioxide is doubled. We find that a strengthening of the prevailing jet-stream winds causes eastbound flights to significantly shorten and westbound flights to significantly lengthen in all seasons. Eastbound and westbound crossings in winter become approximately twice as likely to take under 5 h 20 min and over 7 h 00 min, respectively. For reasons that are explained using a conceptual model, the eastbound shortening and westbound lengthening do not cancel out, causing round-trip journey times to increase. Even assuming no future growth in aviation, the extrapolation of our results to all transatlantic traffic suggests that aircraft will collectively be airborne for an extra 2000 h each year, burning an extra 7.2 million gallons of jet fuel at a cost of US$ 22 million, and emitting an extra 70 million kg of carbon dioxide, which is equivalent to the annual emissions of 7100 average British homes. Our results provide further evidence of the two-way interaction between aviation and climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most damaging winds in a severe extratropical cyclone often occur just ahead of the evaporating ends of cloud filaments emanating from the so-called cloud head. These winds are associated with low-level jets (LLJs), sometimes occurring just above the boundary layer. The question then arises as to how the high momentum is transferred to the surface. An opportunity to address this question arose when the severe ‘St Jude's Day’ windstorm travelled across southern England on 28 October 2013. We have carried out a mesoanalysis of a network of 1 min resolution automatic weather stations and high-resolution Doppler radar scans from the sensitive S-band Chilbolton Advanced Meteorological Radar (CAMRa), along with satellite and radar network imagery and numerical weather prediction products. We show that, although the damaging winds occurred in a relatively dry region of the cyclone, there was evidence within the LLJ of abundant precipitation residues from shallow convective clouds that were evaporating in a localized region of descent. We find that pockets of high momentum were transported towards the surface by the few remaining actively precipitating convective clouds within the LLJ and also by precipitation-free convection in the boundary layer that was able to entrain evaporatively cooled air from the LLJ. The boundary-layer convection was organized in along-wind rolls separated by 500 to about 3000 m, the spacing varying according to the vertical extent of the convection. The spacing was greatest where the strongest winds penetrated to the surface. A run with a medium-resolution version of the Weather Research and Forecasting (WRF) model was able to reproduce the properties of the observed LLJ. It confirmed the LLJ to be a sting jet, which descended over the leading edge of a weaker cold-conveyor-belt jet.