90 resultados para Iron garnet
Resumo:
Naphthalene and anthracene transition metalates are potent reagents, but their electronic structures have remained poorly explored. A study of four Cp*-substituted iron complexes (Cp* = pentamethylcyclopentadienyl) now gives rare insight into the bonding features of such species. The highly oxygen- and water-sensitive compounds [K(18-crown- 6){Cp*Fe(η4-C10H8)}] (K1), [K(18-crown-6){Cp*Fe(η4-C14H10)}] (K2), [Cp*Fe(η4-C10H8)] (1), and [Cp*Fe(η4-C14H10)] (2) were synthesized and characterized by NMR, UV−vis, and 57Fe Mössbauer spectroscopy. The paramagnetic complexes 1 and 2 were additionally characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility measurements. The molecular structures of complexes K1, K2, and 2 were determined by single-crystal X-ray crystallography. Cyclic voltammetry of 1 and 2 and spectroelectrochemical experiments revealed the redox properties of these complexes, which are reversibly reduced to the monoanions [Cp*Fe(η4-C10H8)]− (1−) and [Cp*Fe(η4-C14H10)]− (2−) and reversibly oxidized to the cations [Cp*Fe(η6-C10H8)]+ (1+) and [Cp*Fe(η6-C14H10)]+ (2+). Reduced orbital charges and spin densities of the naphthalene complexes 1−/0/+ and the anthracene derivatives 2−/0/+ were obtained by density functional theory (DFT) methods. Analysis of these data suggests that the electronic structures of the anions 1− and 2− are best represented by low-spin FeII ions coordinated by anionic Cp* and dianionic naphthalene and anthracene ligands. The electronic structures of the neutral complexes 1 and 2 may be described by a superposition of two resonance configurations which, on the one hand, involve a low-spin FeI ion coordinated by the neutral naphthalene or anthracene ligand L, and, on the other hand, a low-spin FeII ion coordinated to a ligand radical L•−. Our study thus reveals the redox noninnocent character of the naphthalene and anthracene ligands, which effectively stabilize the iron atoms in a low formal, but significantly higher spectroscopic oxidation state.
Resumo:
Nanoscale zerovalent iron (nZVI) has potential for the remediation of organochlorine-contaminated environments. Environmental safety concerns associated with in situ deployment of nZVI include potential negative impacts on indigenous microbes whose biodegradative functions could contribute to contaminant remediation. With respect to a two-step polychlorinated biphenyl remediation scenario comprising nZVI dechlorination followed by aerobic biodegradation, we examined the effect of polyacrylic acid (PAA)-coated nZVI (mean diameter = 12.5 nm) applied at 10 g nZVI kg−1 to Aroclor-1242 contaminated and uncontaminated soil over 28 days. nZVI had a limited effect on Aroclor congener profiles, but, either directly or indirectly via changes to soil physico-chemical conditions (pH, Eh), nZVI addition caused perturbation to soil bacterial community composition, and reduced the activity of chloroaromatic mineralizing microorganisms. We conclude that nZVI addition has the potential to inhibit microbial functions that could be important for PCB remediation strategies combining nZVI treatment and biodegradation.
Resumo:
A commercial inactivated iron restricted Salmonella Typhimurium and Salmonella Enterifidis vaccine was used to vaccinate chicks at I day and again at 4 weeks of age, with challenge by a high and a low dose of S. Typhimurium given either orally or by contact with seeder birds inoculated orally with a high dose of S. Typhimurium. In all three challenge regimes, the shedding of challenge strain was reduced significantly (p < 0.05) in vaccinated birds compared with unvaccinated controls. Vaccination reduced colonisation of internal organs after challenge by contact seeder birds. However, no effect of vaccination upon colonisation of internal organs after either high or low oral challenge was apparent. In conclusion, the data indicate that the vaccine should be a useful tool in the control of S. Typhimurium infection in chickens. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The protective effect of two vaccination regimes using Salenvac, a commercially available iron-restricted Salmonella enterica subsp. Enterica serotype Enteritidis PT4 bacterin vaccine, was verified in laying birds. Immunization was intramuscular at 1 day old and again at 4 weeks of age (V2), or at 1 day and 4 weeks with a third dose at 18 weeks of age (V3). Challenge S. Enteritidis (5 to 7.5) x 10(7) colony forming units) was given intravenously at 8, 17, 23, 30 and 59 weeks of age. For all age groups, both vaccination regimes reduced significantly the number of tissues and faecal samples that were culture positive for the challenge strain. For laying birds, fewer eggs (P < 0.001) were culture positive for S. Enteritidis after challenge from vaccinated laying birds ( 56/439 batches of eggs) than unvaccinated birds (99/252 batches). The data give compelling evidence that the vaccine is efficacious and may contribute to the reduction of layer infection and egg contamination.
Resumo:
Few attempts have been made to improve the activity of plant compounds with low antimicrobial efficacy. (+)-Catechin, a weak antimicrobial tea flavanol, was combined with putative adjuncts and tested against different species of bacteria. Copper(II) sulphate enhanced (+)-catechin activity against Pseudomonas aeruginosa but not Staphylococcus aureus, Proteus mirabilis or Escherichia coli. Attempts to raise the activity of (+)-catechin against two unresponsive species, S. aureus and E. coli, with iron(II) sulphate, iron(III) chloride, and vitamin C, showed that iron(II) enhanced (+)-catechin against S. aureus, but not E. coli; neither iron(III) nor combined iron(II) and copper(II), enhanced (+)-catechin activity against either species. Vitamin C enhanced copper(II) containing combinations against both species in the absence of iron(II). Catalase or EDTA added to active samples removed viability effects suggesting that active mixtures had produced H2O2via the action of added metal(II) ions. H2O2 generation by (+)-catechin plus copper(II) mixtures and copper(II) alone could account for the principal effect of bacterial growth inhibition following 30 minute exposures as well as the antimicrobial effect of (+)-catechin–iron(II) against S. aureus. These novel findings about a weak antimicrobial flavanol contrast with previous knowledge of more active flavanols with transition metal combinations. Weak antimicrobial compounds like (+)-catechin within enhancement mixtures may therefore be used as efficacious agents. (+)-Catechin may provide a means of lowering copper(II) or iron(II) contents in certain crop protection and other products.
Resumo:
M-type barium hexaferrite (BaM) is a hard ferrite, crystallizing in space group P6(3)/mmc possessing a hexagonal magneto-plumbite structure, which consists of alternate hexagonal and spinel blocks. The structure of BaM is thus related to those of garnet and spinel ferrite. However the material has proved difficult to synthesize. By taking into account the presence of the spinel block in barium hexagonal ferrite, highly efficient new synthetic methods were devised with routes significantly different from existing ones. These successful variations in synthetic methods have been derived by taking into account a detailed investigation of the structural features of barium hexagonal ferrite and the least change principle whereby configuration changes are kept to a minimum. Thus considering the relevant mechanisms has helped to improve the synthesis efficiencies for both hydrothermal and co-precipitation methods by choosing conditions that invoke the formation of the cubic block or the less stable Fe3O4. The role played by BaFe2O4 in the synthesis is also discussed. The distribution of iron from reactants or intermediates among different sites was also successfully explained. The proposed mechanisms are based on the principle that the cubic block must be self-assembled to form the final product. Thus, it is believed that these formulated mechanisms should be helpful in designing experiments to obtain a deeper understanding of the synthesis process and to investigate the substitution of magnetic ions with doping ions.
Resumo:
The synthesis and crystal structures of three nonheme di-iron(III) complexes with a tridentate N,N,O Schiff-base ligand, 2-({[2-(dimethylamino) ethyl] imino} methyl) phenol (HL), are reported. Complexes [Fe2OL2(NCO)(2)] (1a) and [Fe2OL2(SAL)(2)]center dot H2O [SAL = o-(CHO)C6H4O-] (1b) are unsupported mu-oxido-bridged dimers, and [Fe-2(OH)L-2(HCOO)(2)-(Cl)] (2) is a mu-hydroxido-bridged dimer supported by a formato bridging ligand. All complexes have been characterized by X-ray crystallography and spectroscopic analysis. Complex 1b has been reported previously; however, it has been reinvestigated to confirm the presence of a crucial water molecule in the solid state. Structural analyses show that in 1a the iron atoms are pentacoordinate with a bent Fe-O-Fe angle [142.7(2)degrees], whereas in 2 the metal centers are hexacoordinate with a normal Fe-OH-Fe bridging angle [137.9(2)degrees]. The Fe-O-Fe angles in complexes 1a and 1b differ significantly to those usually shown by (mu-oxido) Fe-III complexes. A theoretical study has been performed in order to rationalize this deviation. Moreover, the influence of the water molecule observed in the solid-state structure of 1b on the Fe-O-Fe angle is also analyzed theoretically.
Resumo:
The butanol-HCl spectrophotometric assay is widely used for quantifying extractable and insoluble condensed tannins (CT, syn. proanthocyanidins) in foods, feeds, and foliage of herbaceous and woody plants, but the method underestimates total CT content when applied directly to plant material. To improve CT quantitation, we tested various cosolvents with butanol-HCl and found that acetone increased anthocyanidin yields from two forage Lotus species having contrasting procyanidin and prodelphinidin compositions. A butanol-HCl-iron assay run with 50% (v/v) acetone gave linear responses with Lotus CT standards and increased estimates of total CT in Lotus herbage and leaves by up to 3.2-fold over the conventional method run without acetone. The use of thiolysis to determine the purity of CT standards further improved quantitation. Gel-state 13C and 1H–13C HSQC NMR spectra of insoluble residues collected after butanol-HCl assays revealed that acetone increased anthocyanidin yields by facilitating complete solubilization of CT from tissue.
Resumo:
This study represents the first detailed multi-proxy palaeoenvironmental investigation associated with a Late Iron Age lake-dwelling site in the eastern Baltic. The main objective was to reconstruct the environmental and vegetation dynamics associated with the establishment of the lake-dwelling and land-use during the last 2,000 years. A lacustrine sediment core located adjacent to a Late Iron Age lake-dwelling, medieval castle and Post-medieval manor was sampled in Lake Āraiši. The core was dated using spheroidal fly-ash particles and radiocarbon dating, and analysed in terms of pollen, non-pollen palynomorphs, diatoms, loss-on-ignition, magnetic susceptibility and element geochemistry. Associations between pollen and other proxies were statistically tested. During ad 1–700, the vicinity of Lake Āraiši was covered by forests and human activities were only small-scale with the first appearance of cereal pollen (Triticum and Secale cereale) after ad 400. The most significant changes in vegetation and environment occurred with the establishment of the lake-dwelling around ad 780 when the immediate surroundings of the lake were cleared for agriculture, and within the lake there were increased nutrient levels. The highest accumulation rates of coprophilous fungi coincide with the occupation of the lake-dwelling from ad 780–1050, indicating that parts of the dwelling functioned as byres for livestock. The conquest of tribal lands during the crusades resulted in changes to the ownership, administration and organisation of the land, but our results indicate that the form and type of agriculture and land-use continued much as it had during the preceding Late Iron Age.