113 resultados para Inorganic UV filter
Resumo:
In a recent study, Williams introduced a simple modification to the widely used Robert–Asselin (RA) filter for numerical integration. The main purpose of the Robert–Asselin–Williams (RAW) filter is to avoid the undesired numerical damping of the RA filter and to increase the accuracy. In the present paper, the effects of the modification are comprehensively evaluated in the Simplified Parameterizations, Primitive Equation Dynamics (SPEEDY) atmospheric general circulation model. First, the authors search for significant changes in the monthly climatology due to the introduction of the new filter. After testing both at the local level and at the field level, no significant changes are found, which is advantageous in the sense that the new scheme does not require a retuning of the parameterized model physics. Second, the authors examine whether the new filter improves the skill of short- and medium-term forecasts. January 1982 data from the NCEP–NCAR reanalysis are used to evaluate the forecast skill. Improvements are found in all the model variables (except the relative humidity, which is hardly changed). The improvements increase with lead time and are especially evident in medium-range forecasts (96–144 h). For example, in tropical surface pressure predictions, 5-day forecasts made using the RAW filter have approximately the same skill as 4-day forecasts made using the RA filter. The results of this work are encouraging for the implementation of the RAW filter in other models currently using the RA filter.
Resumo:
A detailed analysis is presented of solar UV spectral irradiance for the period between May 2003 and August 2005, when data are available from both the Solar Ultraviolet pectral Irradiance Monitor (SUSIM) instrument (on board the pper Atmosphere Research Satellite (UARS) spacecraft) and the Solar Stellar Irradiance Comparison Experiment (SOLSTICE) instrument (on board the Solar Radiation and Climate Experiment (SORCE) satellite). The ultimate aim is to develop a data composite that can be used to accurately determine any differences between the “exceptional” solar minimum at the end of solar cycle 23 and the previous minimum at the end of solar cycle 22 without having to rely on proxy data to set the long‐term change. SUSIM data are studied because they are the only data available in the “SOLSTICE gap” between the end of available UARS SOLSTICE data and the start of the SORCE data. At any one wavelength the two data sets are considered too dissimilar to be combined into a meaningful composite if any one of three correlations does not exceed a threshold of 0.8. This criterion removes all wavelengths except those in a small range between 156 nm and 208 nm, the longer wavelengths of which influence ozone production and heating in the lower stratosphere. Eight different methods are employed to intercalibrate the two data sequences. All methods give smaller changes between the minima than are seen when the data are not adjusted; however, correcting the SUSIM data to allow for an exponentially decaying offset drift gives a composite that is largely consistent with the unadjusted data from the SOLSTICE instruments on both UARS and SORCE and in which the recent minimum is consistently lower in the wave band studied.
Resumo:
The effect of UV radiation on fruit secondary compounds of strawberry cv ‘Elsanta’ was recorded taking chronological age and fruit position on the truss into account. When fruit of similar age post-anthesis, and truss position were compared, we found that the concentration of secondary compounds differed according to fruit position on the truss. UV radiation hastened the rate of colour development and resulted in an increase in fruit anthocyanin (14–31%), flavonoid (9–21%) and phenolic (9–20%) contents at harvesting; but it had no effect on fruit soluble solid content, pH and volatile composition. It did, however, increase leaf flavonoid (16%) and phenolic (8%) concentrations. Fruit ripened under a UV transparent film were firmer, smaller but greater in number than fruit ripened under a UV opaque film. Overall, the results indicate that UV radiation does not affect all aspects of strawberry ripening but independently alters rate of colour development and fruit firmness
Resumo:
A particle filter is a data assimilation scheme that employs a fully nonlinear, non-Gaussian analysis step. Unfortunately as the size of the state grows the number of ensemble members required for the particle filter to converge to the true solution increases exponentially. To overcome this Vaswani [Vaswani N. 2008. IEEE Trans Signal Process 56:4583–97] proposed a new method known as mode tracking to improve the efficiency of the particle filter. When mode tracking, the state is split into two subspaces. One subspace is forecast using the particle filter, the other is treated so that its values are set equal to the mode of the marginal pdf. There are many ways to split the state. One hypothesis is that the best results should be obtained from the particle filter with mode tracking when we mode track the maximum number of unimodal dimensions. The aim of this paper is to test this hypothesis using the three dimensional stochastic Lorenz equations with direct observations. It is found that mode tracking the maximum number of unimodal dimensions does not always provide the best result. The best choice of states to mode track depends on the number of particles used and the accuracy and frequency of the observations.
Resumo:
BACKGROUND: Strawberry (Fragaria × ananassa Duchesne var. Elsanta) plants were grown in polytunnels covered with three polythene films that transmitted varying levels of ultraviolet (UV) light. Fruit were harvested under near-commercial conditions and quality and yield were measured. During ripening, changes in the colour parameters of individual fruit were monitored, and the accuracy of using surface colour to predict other quality parameters was determined by analysing the correlation between colour and quality parameters within UV treatments. RESULTS: Higher exposure to UV during growth resulted in the fruit becoming darker at harvest and developing surface colour more quickly; fruit were also firmer at harvest, but shelf life was not consistently affected by the UV regime. Surface colour measurements were poorly correlated to firmness, shelf life or total phenolics, anthocyanins and ellagic acid contents. CONCLUSION: Although surface colour of strawberry fruits was affected by the UV regime during growth, and this parameter is an important factor in consumer perception, we concluded that the surface colour at the time of harvest was, contrary to consumer expectations, a poor indicator of firmness, potential shelf life or anthocyanin content. Copyright © 2011 Society of Chemical Industry
Resumo:
Sirens’ used by police, fire and paramedic vehicles generate noise that propagates inside the vehicle cab that subsequently corrupts intelligibility of voice communications from the emergency vehicle to the control room. It is even common for the siren to be turned off to enable the control room to hear what is being said. Both fixed filter and adaptive filter systems have previously been developed to help cancel the transmission of the siren noise over the radio. Previous cancellation systems have only concentrated on the traditional 2-tone, wail and yelp sirens. This paper discusses an improvement to a previous adaptive filter system and presents the cancellation results to three new types of sirens; being chirp pulsar and localiser. A siren noise filter system has the capability to improve the response time for an emergency vehicle and thus help save lives. To date, this system has been tested using live recordings taken from a nonemergency situation with good results.
Resumo:
This dissertation deals with aspects of sequential data assimilation (in particular ensemble Kalman filtering) and numerical weather forecasting. In the first part, the recently formulated Ensemble Kalman-Bucy (EnKBF) filter is revisited. It is shown that the previously used numerical integration scheme fails when the magnitude of the background error covariance grows beyond that of the observational error covariance in the forecast window. Therefore, we present a suitable integration scheme that handles the stiffening of the differential equations involved and doesn’t represent further computational expense. Moreover, a transform-based alternative to the EnKBF is developed: under this scheme, the operations are performed in the ensemble space instead of in the state space. Advantages of this formulation are explained. For the first time, the EnKBF is implemented in an atmospheric model. The second part of this work deals with ensemble clustering, a phenomenon that arises when performing data assimilation using of deterministic ensemble square root filters in highly nonlinear forecast models. Namely, an M-member ensemble detaches into an outlier and a cluster of M-1 members. Previous works may suggest that this issue represents a failure of EnSRFs; this work dispels that notion. It is shown that ensemble clustering can be reverted also due to nonlinear processes, in particular the alternation between nonlinear expansion and compression of the ensemble for different regions of the attractor. Some EnSRFs that use random rotations have been developed to overcome this issue; these formulations are analyzed and their advantages and disadvantages with respect to common EnSRFs are discussed. The third and last part contains the implementation of the Robert-Asselin-Williams (RAW) filter in an atmospheric model. The RAW filter is an improvement to the widely popular Robert-Asselin filter that successfully suppresses spurious computational waves while avoiding any distortion in the mean value of the function. Using statistical significance tests both at the local and field level, it is shown that the climatology of the SPEEDY model is not modified by the changed time stepping scheme; hence, no retuning of the parameterizations is required. It is found the accuracy of the medium-term forecasts is increased by using the RAW filter.
Resumo:
Naphthalene and anthracene transition metalates are potent reagents, but their electronic structures have remained poorly explored. A study of four Cp*-substituted iron complexes (Cp* = pentamethylcyclopentadienyl) now gives rare insight into the bonding features of such species. The highly oxygen- and water-sensitive compounds [K(18-crown- 6){Cp*Fe(η4-C10H8)}] (K1), [K(18-crown-6){Cp*Fe(η4-C14H10)}] (K2), [Cp*Fe(η4-C10H8)] (1), and [Cp*Fe(η4-C14H10)] (2) were synthesized and characterized by NMR, UV−vis, and 57Fe Mössbauer spectroscopy. The paramagnetic complexes 1 and 2 were additionally characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility measurements. The molecular structures of complexes K1, K2, and 2 were determined by single-crystal X-ray crystallography. Cyclic voltammetry of 1 and 2 and spectroelectrochemical experiments revealed the redox properties of these complexes, which are reversibly reduced to the monoanions [Cp*Fe(η4-C10H8)]− (1−) and [Cp*Fe(η4-C14H10)]− (2−) and reversibly oxidized to the cations [Cp*Fe(η6-C10H8)]+ (1+) and [Cp*Fe(η6-C14H10)]+ (2+). Reduced orbital charges and spin densities of the naphthalene complexes 1−/0/+ and the anthracene derivatives 2−/0/+ were obtained by density functional theory (DFT) methods. Analysis of these data suggests that the electronic structures of the anions 1− and 2− are best represented by low-spin FeII ions coordinated by anionic Cp* and dianionic naphthalene and anthracene ligands. The electronic structures of the neutral complexes 1 and 2 may be described by a superposition of two resonance configurations which, on the one hand, involve a low-spin FeI ion coordinated by the neutral naphthalene or anthracene ligand L, and, on the other hand, a low-spin FeII ion coordinated to a ligand radical L•−. Our study thus reveals the redox noninnocent character of the naphthalene and anthracene ligands, which effectively stabilize the iron atoms in a low formal, but significantly higher spectroscopic oxidation state.
Resumo:
This paper evaluates the relationship between the cloud modification factor (CMF) in the ultraviolet erythe- mal range and the cloud optical depth (COD) retrieved from the Aerosol Robotic Network (AERONET) "cloud mode" algorithm under overcast cloudy conditions (confirmed with sky images) at Granada, Spain, mainly for non-precipitating, overcast and relatively homogenous water clouds. Empirical CMF showed a clear exponential dependence on experimental COD values, decreasing approximately from 0.7 for COD=10 to 0.25 for COD=50. In addition, these COD measurements were used as input in the LibRadtran radia tive transfer code allowing the simulation of CMF values for the selected overcast cases. The modeled CMF exhibited a dependence on COD similar to the empirical CMF, but modeled values present a strong underestimation with respect to the empirical factors (mean bias of 22 %). To explain this high bias, an exhaustive comparison between modeled and experimental UV erythemal irradiance (UVER) data was performed. The comparison revealed that the radiative transfer simulations were 8 % higher than the observations for clear-sky conditions. The rest of the bias (~14 %) may be attributed to the substantial underestimation of modeled UVER with respect to experimental UVER under overcast conditions, although the correlation between both dataset was high (R2 ~ 0.93). A sensitive test showed that the main reason responsible for that underestimation is the experimental AERONET COD used as input in the simulations, which has been retrieved from zenith radiances in the visible range. In this sense, effective COD in the erythemal interval were derived from an iteration procedure based on searching the best match between modeled and experimental UVER values for each selected overcast case. These effective COD values were smaller than AERONET COD data in about 80 % of the overcast cases with a mean relative difference of 22 %.
Resumo:
Four new heteroleptic mononuclear complexes, [Cu(PPh3)2L1](1) {L1 = (C9H11O2CS2), [2-(4-methoxyphenyl)ethyl]xanthate}, [Cu(PPh3)2L2] (2) [L2 = (C6H7OCS2), benzylxanthate], [Cu(PPh3)2L3] (3) [L3 = (C5H9OCS2), (cyclobutylmethyl)xanthate] and [Cu(PPh3)2L4] (4) [L4 = (NC13H13NCS2), N-benzyl-N-(4-pyridylmethyl)dithiocarbamate], have been synthesized and characterized by using microanalysis, IR, UV/Vis, 1H, 13C and 31P NMR spectroscopy and X-ray crystallography; their photoluminescent behaviour and molecular electrical conductivity have been investigated. CuI possesses four-coordinate distorted tetrahedral geometry in all the complexes. All are weakly conducting and exhibit semiconductor behaviour in the studied 303363 K temperature range. Complex 4 shows striking luminescent behaviour emitting bluish green light at 480 nm in CH2Cl2 solution at room temperature
Resumo:
The reduction path of the complex fac-[ReΙ(imH)(CO)3(bpy)]+ was studied in situ by UV-Vis-NIR-IR spectroelectrochemistry within an OTTLE cell. The complex undergoes 1e‒ reduction of the 2,2'-bipyridine (bpy) ligand and intramolecular electron transfer resulting in the conversion of the axial imidazole (imH) ligand to 3-imidazolate (3-im–). This step is followed by two bpy-based 1e– reductions producing ultimately the five-coordinate complex [Re(CO)3(bpy)]‒ and free 3-im‒. The identity of the reduction product fac-[Re(3-im–)(CO)3(bpy)] has been proven by partial chemical deprotonation of the parent complex followed by IR spectroelectrochemistry. This is the first time when an electrochemical conversion of metal-coordinated imidazole to terminal 3-imidazolate has been observed.